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Programming manual

STM32 Cortex®-M0+ MCUs programming manual

Introduction

This programming manual provides information for application and system-level software developers. It gives a full description
of the programming model, instruction set, and core peripherals of the Cortex®-M0+ processor.

Cortex®-MO0+ is a high-performance 32-bit processor designed for integration in microcontrollers. It offers significant benefits to
developers, including:

. Outstanding processing performance combined with fast interrupt handling.
. Enhanced system debug with extensive breakpoint options.

. Efficient processor core, system, and memories.

. Ultra-low power consumption with integrated sleep modes.

. Platform security.

Table 1. Applicable products

| Twe | Podwes |
STM32CO0 series, STM32G0 series, STM32LO0 series, STM32WB series, STM32WBO0 series, STM32UO series,
STM32WL5x product line, STM32WL3x product line

Microcontrollers

Microprocessors | STM32MP251, STM32MP253, STM32MP255, and STM32MP257 product lines
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For further information contact your local STMicroelectronics sales office.
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1 About this document

This document provides the information required for application and system-level software development. It does
not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have no experience of

Arm®.
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
arm
1.1 Typographical conventions

The typographical conventions used in this document are:

italic Highlights important notes, introduces special terminology, denotes internal cross-references, and

citations.
bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in

descriptive lists, where appropriate.

Denotes text that the user can enter at the keyboard, such as commands, file and program names, and
monospace

source code.

Denotes a permitted abbreviation for a command or option. The user can enter the underlined text
monospace . .

instead of the full command or option name.
monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold | Denotes language keywords when used outside example code.

Enclose replaceable terms for assembler syntax where they appear in code or code fragments. For
<and > example:

LDRSB<cond> <Rt>, [<Rn>, #<offset>]

1.2 List of abbreviations for registers
The following abbreviations are used in register descriptions:

read/write (rw) The software can read and write to these bits.
read-only (r) The software can only read these bits.

" ly W) The software can only write to this bit.
write-only (w
Reading the bit returns the reset value.

dset (1s) The software can read as well as set this bit.
read/set (rs
Writing '0" has no effect on the bit value.

read/clear (rc_w) The software can read as well as clear this bit by writing any value.

The software can read as well as clear this bit by writing 1.
read/clear (rc_w1)
Writing '0" has no effect on the bit value.

The software can read as well as clear this bit by writing 0.
read/clear (rc_w0)
Writing '1' has no effect on the bit value.

toggle (t) The software can only toggle this bit by writing '1'. Writing '0" has no effect.
Reserved (Res.) Reserved bit, must be kept at reset value.
1.3 About the Cortex® M0+ processor and core peripherals

The Cortex®-M0+ processor is an entry-level 32-bit Arm® Cortex® processor designed for a broad range of
embedded applications. It offers significant benefits to developers, including:

. A simple architecture that is easy to learn and program.
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. Ultra-low power, energy-efficient operation.

. Excellent code density.

. Deterministic, high-performance interrupt handling.

. Upward compatibility with Cortex-M processor family.

. Platform security robustness, with optional integrated memory protection unit (MPU).

Figure 1. Cortex®-M0+ implementation
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The Cortex®-M0+ processor is built on a 32-bit processor core that is highly optimized for area and power, with a
2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small
but powerful instruction set and extensively optimized design, providing high-end processing hardware including a
single-cycle multiplier.

The Cortex®-M0+ processor implements the ARMv6-M architecture, which is based on the 16-bit Thumb®
instruction set and includes Thumb-2 technology. This provides the exceptional performance expected of a
modern 32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

The Cortex®-M0+ processor closely integrates a configurable nested vectored interrupt controller (NVIC), to
deliver industry-leading interrupt performance. The NVIC:

. Includes a nonmaskable interrupt (NMI).
. Provides zero jitter interrupt option.
. Provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs),
dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the
ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any
assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly
reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes that include a deep-sleep function that
enables the entire device to be rapidly powered down.
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1.3.1 System-level interface

The Cortex®-M0+ processor provides a single system-level interface using AMBA® technology to provide high
speed low latency memory accesses.

The Cortex®-M0+ processor has an optional memory protection unit (MPU) that provides fine grain memory
control, enabling applications to use multiple privilege levels, separating and protecting code, data, and stack on a
task-by-task basis. Such requirements are becoming critical in many embedded applications such as automotive
systems.

1.3.2 Integrated configurable debug

The Cortex®-M0+ processor implements a complete hardware debug solution, with extensive hardware
breakpoint data, and watchpoint options. This provides high system visibility of the processor, memory, and
peripherals through a <2-pin serial wire debug (SWD) port> that is ideal for microcontrollers and other small
package devices.

1.3.3 Cortex®-M0+ processor feature summary
. Thumb instruction set with Thumb-2 technology.
. High code density with 32-bit performance.
. User and privileged mode execution.
. Tools and binary upwards compatible with Cortex®-M processor family.
. Integrated ultra low-power sleep modes.
. Efficient code execution enabling slower processor clock or increased sleep time.
. Single-cycle 32-bit hardware multiplier.
. Zero jitter interrupt handling.
. Memory protection unit (MPU) for safety-critical applications.
. Low latency, high-speed peripheral I/O port.
. A vector table offset register.
. Extensive debug capabilities.
1.3.4 Cortex®-M0+ core peripherals
These are:

Nested vectored interrupt controller (NVIC)

The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

System control block

The System control block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions.

System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a real time operating system (RTOS) tick
timer or as a simple counter.

Memory protection unit

The memory protection unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region.

1/0 port

The /O port provides single-cycle loads and stores to tightly coupled peripherals.
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2 Cortex®-M0+ processor

2.1 Programmers model

This section describes the Cortex®-M0+ programmers model. In addition to the individual core register
descriptions, it contains information about the processor modes, privilege levels for software execution, and
stacks.

211 Processor modes and privilege levels for software execution
The processor modes are:

Thread mode  Executes application software. The processor enters thread mode when it comes out of reset.

Handler mode Handles exceptions. The processor returns to thread mode when it has finished all exception processing.

The privilege levels for software execution are:

The software:

. Has limited access to system registers using the MSR and MRS instructions, and cannot use the CPS
Unprivileged instruction to mask interrupts.

. Cannot access the system timer, NVIC, or system control block.

. Might have restricted access to memory or peripherals.

The software can use all the instructions and has access to all resources. Privileged software executes at the

Privileged privileged level.

In thread mode, the CONTROL register controls whether software execution is privileged or unprivileged, see
CONTROL register. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
thread mode. Unprivileged software can use the SvC instruction to make a supervisor call to transfer control to
privileged software.

2.1.2 Stacks

The processor uses a full descending stack. This means that the stack pointer indicates the last stacked item on
the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and
then writes the item to the new memory location. The processor implements two stacks, the main stack and the
process stack, with independent copies of the stack pointer, see Stack pointer.

In thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack,
see CONTROL register. In handler mode, the processor always uses the main stack. The options for processor
operations are:

Table 2. Summary of processor mode, execution privilege level, and stack use options

Processor mode Used to execute Privilege level for software execution m

Thread Applications Privileged or unprivileged'" Main stack or process stack!"
Handler Exception handlers Always privileged Main stack

1. See CONTROL register

21.3 Core registers
The processor core registers are:
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Figure 2. Processor core registers
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Table 3. Core register set summary

R0O-R12 Unknown General purpose registers.

MSP RW See description Stack pointer.

PSP RW Unknown Stack pointer

LR RW Unknown Link register

PC RW See description Program counter

PSR RW Unknown'?) Program status register

APSR RW Unknown Application program status register
IPSR RO 0x00000000 Interrupt program status register
EPSR RO Unknown Execution program status register
PRIMASK RW 0x00000000 Priority mask register

CONTROL RwW 0x00000000 CONTROL register

DT33822V1

1. Describes access type during program execution in thread mode and handler mode. Debug access can differ.
2. Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

General purpose registers

R0-R12 are 32-bit general purpose registers for data operations.

Stack pointer

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register indicates the stack pointer
to use:

. 0 = Main Stack Pointer (MSP). This is the reset value.

. 1 = Process Stack Pointer (PSP).
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On reset, the processor loads the MSP with the value from address 0x00000000.

Link register

The link register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the LR value is unknown.

Program counter

The program counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

Program status register

The program status register (PSR) combines:

. Application program status register (APSR).

. Interrupt program status register (IPSR).

. Execution program status register (EPSR).

These registers are allocated as mutually exclusive bitfields within the 32-bit PSR. The PSR bit assignments are:

Figure 3. APSR, IPSR, and EPSR bit assignments

31 30 29 28 27 2524 23 6 5 0
APSR (N Z|C|V Reserved
IPSR Reserved Exception number
EPSR Reserved T Reserved

DT33823V1

Access these registers individually or as a combination of any two or all three registers, using the register name
as an argument to the MSR or MRS instructions. For example:

. Read all of the registers using PSR with the MRS instruction.
. Write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 4. PSR register combinations

PSR RW() APSR, EPSR, and IPSR.
IEPSR RO EPSR and IPSR.
IAPSR RW®) APSR and IPSR.
EAPSR RwW(") APSR and EPSR.

1. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.
2. The processor ignores writes to the IPSR bits.

See the instruction descriptions Section 3.7.6: MRS and Section 3.7.7: MSR for more information about how to
access the program status registers.
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Application program status register

The APSR contains the current state of the condition flags, from previous instruction executions. See the register
summary in Table 3. Core register set summary for its attributes. The bit assignments are:

Table 5. APSR bit assignment

e T e

[31] N Negative flag.

[30] Zz Zero flag.

[29] C Carry or borrow flag.
[28] \% Overflow flag.

[27:0] - Reserved.

See Section 3.3.6: Conditional execution for more information about the APSR negative, zero, carry or borrow,
and overflow flags.

Interrupt program status register

The IPSR contains the exception number of the current interrupt service routine (ISR). See the register summary
in Table 3. Core register set summary for its attributes. The bit assignments are:

Table 6. IPSR bit assignments

[31:6] - Reserved
This is the number of the current exception:
0 = Thread mode.
1 = Reserved.
2 =NML.
3 = HardFault.
4-10 = Reserved.
11 = SVCall.
12, 13 = Reserved.
14 = PendSV.
15 = SysTick | Reserved.
16 = IRQO.

[5:0] Exception number

47 = IRQ31.
48-63 = Reserved.

see Section 2.3.2: Exception types for more information.

Execution program status register

The EPSR contains the thumb state bit.
See the register summary in Table 3. Core register set summary for the EPSR attributes. The bit assignments are:
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Table 7. EPSR bit assignments

[31:25] - Reserved.
[24] T Thumb state bit.
[23:0] - Reserved.

Attempts by application software to read the EPSR directly using the MRS instruction always return zero. Attempts
to write the EPSR using the MRS instruction are ignored. Fault handlers can examine the EPSR value in the
stacked PSR to determine the cause of the fault. See Section 2.3.6: Exception entry and return. The following can
clear the T bit to O:

. Instructions BLX, BX, and POP{PC}.
. Restoration from the stacked xPSR value on an exception return.
. Bit[0] of the vector value on an exception entry.

Attempting to execute instructions when the T bit is 0 results in a HardFault or lockup. See Section 2.4.1: Lockup
for more information.

Interruptible-restartable instructions

The interruptible-restartable instructions are LDM and STM, PUSH, POP, and MULS. When an interrupt occurs
during the execution of one of these instructions, the processor abandons execution of the instruction. After
servicing the interrupt, the processor restarts execution of the instruction from the beginning.

Exception mask register

The exception mask register disables the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks or code sequences requiring atomicity.

To disable or reenable exceptions, use the MSR and MRS instructions, or the CPs instruction, to change the value
of PRIMASK. Section 3.7.7: MSR and Section 3.7.2: CPS for more information.

Priority mask register

The PRIMASK register prevents activation of all exceptions with configurable priority. See the register summary in
Table 3. Core register set summary for its attributes. The bit assignments are:

Table 8. PRIMASK register bit assignments

T

[31:1] - Reserved.
Prioritizable interrupt mask:
[0] PM 0 = No effect.

1 = Prevents the activation of all exceptions with configurable priority.

CONTROL register

The CONTROL register controls the stack used, and the privilege level for software execution, when the
processor is in thread mode. See the register summary in Table 3. Core register set summary for its attributes.
The bit assignments are:
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Figure 4. Control bit assignment
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Table 9. Control register bit assignments

e

[31:2] - Reserved.

Defines the current stack:

0 = MSP is the current stack pointer.
[1] SPSEL

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.

Defines the thread mode privilege level:
[0] nPRIV 0 = Privileged.
1 = Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the
CONTROL register when in Handler mode. The exception entry and return mechanisms automatically update the
CONTROL register.

In an OS environment, it is recommended that threads running in thread mode use the process stack and the
kernel and exception handlers use the main stack.

By default, thread mode uses the MSP. To switch the stack pointer used in thread mode to the PSP, use the MSR
instruction to set the active stack pointer bit to 1, Section 3.7.6: MRS.

Note: When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See Section 3.7.5: ISB.

21.4 Exceptions and interrupts

The Cortex®-M0+ processor supports interrupts and system exceptions. The processor and the nested vectored
interrupt controller (NVIC) prioritize and handle all exceptions. An interrupt or exception changes the normal flow
of software control. The processor uses handler mode to handle all exceptions except for reset. See Exception
entry and Exception return for more information.

The NVIC registers control interrupt handling. See Section 4.2: Nested vectored interrupt controller for more
information.

21.5 Data types
The processor:
. Supports the following data types:
- 32-bit words.
- 16-bit halfwords.
- 8-bit bytes.
. Manages all data memory accesses as little-endian or big-endian. Instruction memory and private

peripheral bus (PPB) accesses are always little-endian. See Section 2.2.1: Memory regions, types, and
attributes for more information.
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2.1.6 Cortex® microcontroller software interface standard

Arm® provides the Cortex® microcontroller software interface standard (CMSIS) for programming Cortex®-MO0+
microcontrollers. The CMSIS is an integrated part of the device driver library. For a Cortex®-M0+ microcontroller
system, CMSIS defines:

. A common way to:
- Access peripheral registers.
— Define exception vectors.
. The names of:
- The registers of the core peripherals.
- The core exception vectors.
. A device-independent interface for RTOS kernels.
The CMSIS includes address definitions and data structures for the core peripherals in the Cortex®-M0+

processor. It also includes optional interfaces for middleware components comprising a TCP/IP stack and a flash
file system.

The CMSIS simplifies software development by enabling the reuse of template code, and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.
Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the
architectural short names that might be used in other documents.
The following sections give more information about the CMSIS:
. Section 2.5.4: Power management programming hints
. Section 3.2: Intrinsic functions
. Section 4.2.1: Accessing the Cortex®-M0+ NVIC registers using CMSIS
. Section 4.2.8: NVIC usage hints and tips

2.2 Memory model

This section describes the processor memory map and the behavior of memory accesses. The processor has a
fixed memory map that provides up to 4GB of addressable memory. The memory map is:
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Figure 5. Memory map
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The processor reserves regions of the private peripheral bus (PPB) address range for core peripheral registers,
see Section 1.3: About the Cortex® MO+ processor and core peripherals.

221 Memory regions, types, and attributes

The memory map and the programming of the MPU splits into regions. Each region has a defined memory type,
and some regions have additional memory attributes. The memory type and attributes determine the behavior of
accesses to the region.

The memory types are:

Normal The processor can re-order transactions for efficiency, or perform speculative reads.

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

Device

Strongly-ordered The processor preserves transaction order relative to all other transactions.

The different ordering requirements for device and Strongly ordered memory mean that the memory system can
buffer a write to device memory, but must not buffer a write to Strongly ordered memory.

The additional memory attributes include.
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For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

Shareable If multiple bus masters can access a non-shareable memory region, software must ensure data coherency
between the bus masters.

<This description is required only if the device is likely to be used in systems where memory is shared
between multiple processors.>

Execute Means the processor prevents instruction accesses. A HardFault exception is generated on executing an
Never (XN) instruction fetched from an XN region of memory.
222 Memory system ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, provided
that any reordering does not affect the behavior of the instruction sequence. Normally, if correct program
execution depends on two memory accesses completing in program order, software must insert a memory barrier
instruction between the memory access instructions, see Section 2.2.2: Memory system ordering of memory
accesses.

However, the memory system does guarantee some ordering of accesses to device and strongly ordered
memory. For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses caused by the two instructions is:

Figure 6. Ordering of memory accesses

i Strongly-
A2 Normal Device access gly
A1 access Non- o o ordered
areable
shareable aceess
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < < -
3
]
3
=
[a]
. - means that the memory system does not guarantee the ordering of the accesses.
. < means that accesses are observed in program order, that is A1 is always observed before A2.

223 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:

Table 10. Memory access behavior

0x00000000- Code Normal _ | Executable region for program code. The user can
Ox1FFFFFFF also put data here.

8:32':('):?:'22;:0 0- SRAM Normal ) Eggguht::);.e region for data. The user can also put
8;{54}:?:['):22'92 0= Peripheral Device XN | External device memory.

8;9?:?:22222 0- External RAM Normal - Executable region for data.
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0xA0000000-

OXDFFFFFFF External device Device XN | External device memory.

This region includes the NVIC, System timer, and
0xE0000000- Private Peripheral | Strongly- XN System Control Block.
OXEOOFFFFF Bus ordered

Only word accesses can be used in this region.

For further information, see Section 2.2.1: Memory regions, types, and attributes.
The code, SRAM, and external RAM regions can hold programs.

The MPU can override the default memory access behavior described in this section. For more information, see
Section 4.5: Memory protection unit.

224 Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional access constraints,
and some regions are subdivided, as Table 11. Memory region shareability and cache policies shows:

Table 11. Memory region shareability and cache policies

Address range Memory type Shareability Cache policy

0x00000000~- Ox1FFFFFFF Code Normal
0x20000000~- Ox3FFFFFFF SRAM Normal - WBWA
0x40000000~ Ox5FFFFFFF Peripheral Device - -
0x60000000~ Ox7FFFFFFF WBWA
External RAM Normal -
0x80000000~- Ox9FFFFFFF WT
0xA0000000- OxBFFFFFFF Shareable
External device Device -
0xC0000000~- OxDFFFFFFF Non-shareable
0xE0000000- OXEOOFFFFF Private Peripheral Bus Strongly- ordered Shareable -
0xE0100000- OxFFFFFFFF Device Device - -
Note:
For further information on memory types and shareability, see Section 2.2.1: Memory regions, types, and
attributes.
Cache policy: T = Write through, no write allocate. WBWA = Write back, write allocate.
2.2.5 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

. The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

. Memory or devices in the memory map might have different wait states.

. Some memory accesses are buffered or speculative.

Section 2.2.2: Memory system ordering of memory accesses describes the cases where the memory system
guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must
include memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before

DMB subsequent memory transactions. See Section 3.7.3: DMB.

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before
subsequent instructions execute. See Section 3.7.4: DSB.
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The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See Section 3.7.5: ISB.

ISB

The following are examples of using memory barrier instructions:

If the program changes an entry in the vector table, and then enables the corresponding exception, use
Vector table a DMB instruction between the operations. This ensures that if the exception is taken immediately after
being enabled the processor uses the new exception vector.

If a program contains self-modifying code, use an ISB instruction immediately after the code

Self-modifying code modification in the program. This ensures subsequent instruction execution uses the updated program.

Memory map If the system contains a memory map switching mechanism, use a DSB instruction after switching the
switching memory map. This ensures subsequent instruction execution uses the updated memory map

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration

MPU programming is used by subsequent instructions.

If the program updates the value of the VTOR, use a DMB instruction to ensure that the new vector

VTOR programming table is used for subsequent exceptions.

Memory accesses to strongly ordered memory, such as the system control block, do not require the use of DMB
instructions.

2.2.6 Memory endianness
The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,

bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Little-endian format describes
how words of data are stored in memory.
Little-endian format

In little-endian format, the processor stores the least significant byte (Isbyte) of a word at the lowest-numbered
byte, and the most significant byte (msbyte) at the highest-numbered byte. For example:

Figure 7. Little-endian format example

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+
D) B2
A; B3 msbyte
>
N
3
©
a
2.3 Exception model

This section describes the exception model.

2.31 Exception states
Each exception is in one of the following states:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor.
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An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.

An exception that is being serviced by the processor but has not completed.

Active An exception handler can interrupt the execution of another exception handler. In this case both exceptions
are in the active state.

Qg:\é?ngnd The exception is being serviced by the processor and there is a pending exception from the same source.
2.3.2 Exception types

The exception types are:

Reset is invoked on power-up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When

Reset reset is deasserted, execution restarts from the address provided by the reset entry in the vector table.
Execution restarts as privileged execution in thread mode.
A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This is the highest
NMI priority exception other than reset. It is permanently enabled and has a fixed priority of -2. NMIs cannot be:
. Masked or prevented from activation by any other exception.
. Preempted by any exception other than Reset.
A HardFault is an exception that occurs because of an error during normal or exception processing. HardFaults
HardFault ) - . . - . - ) -
have a fixed priority of -1, meaning they have higher priority than any exception with configurable priority.
A Supervisor Call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment,
SVCall o . . - . .
applications can use SVC instructions to access OS kernel functions and device drivers.
PendsV PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.
) A SysTick exception is an exception that the system timer generates when it reaches zero. Software can also
SysTick ) : ) ) . )
generate a SysTick exception. In an OS environment, the processor can use this exception as system tick.
An interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software request. All interrupts
Interrupt ) . - f - . .
(IRQ) are asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the

processor.

Table 12. Properties of the different exception types

A IRQ i
Except|o1n Exception Priority Vector address(? Activation
number(") number(® type

1 - Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C Synchronous

4-10 - Reserved - - -
Configurable. See

11 -5 SVCall Section 4.2.6: Interrupt priority 0x0000002C Synchronous
registers.

12-13 - Reserved - - -
Configurable. See

14 -2 PendSV Section 4.2.6: Interrupt priority 0x00000038 Asynchronous
registers
Configurable. See

15 -1 SysTick Section 4.2.6: Interrupt priority 0x0000003C Asynchronous
registers

15 - Reserved - - -
Configurable. 0x00000040 and

16 and above | 0 and above | Interrupt (IRQ) ' SeeSection 4.2.6: Interrupt priority above. Increasing in | Asynchronous

registers
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1. To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for exceptions other than
interrupts. The IPSR returns the Exception number. See Interrupt program status register

2. See Figure 8. Vector table for more information.

For an asynchronous exception, other than reset, the processor can execute additional instructions between
when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12. Properties of the different exception types shows as
having configurable priority, see Section 4.2.3: Interrupt clear-enable register.

For more information about HardFaults, see Section 2.4: Fault handling

233 Exception handlers
The processor handles exceptions using:

Interrupt Service Routines
(ISRs)

Fault handler HardFault is the only exception handled by the fault handler.

Interrupts IRQO to IRQ31 are the exceptions handled by ISRs.

NMI, PendSV, SVCall SysTick, and HardFault are all system exceptions handled by system

System handlers handlers.

2.3.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 8. Vector table shows the order of the exception vectors in the vector
table. The least-significant bit of each vector must be 1, indicating that the exception handler is written in thumb
code.
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Figure 8. Vector table

Exception number IRQ number Vector Offset
47 31 IRQ31
0xBC
18 2 IRQ2
0x48
17 1 IRQ1
0x44
16 0 IRQO
0x40
15 -1 SysTick
0x3C
14 -2 PendSV
0x38
13
Reserved
12
11 -5 SVCall
0x2C
10
9
8
7 Reserved
6
5
4
0x10
3 -13 HardFault
0x0C
2 -14 NMI
0x08
1 Reset
0x04
Initial SP value
0x00

DT33828V1

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the VTOR to
relocate the vector table start address to a different memory location with the respect to vector table size and
granularity of TBLOFF settings (see Section 4.3.4: Vector table offset register).

2.3.5 Exception priorities
As Table 12. Properties of the different exception types shows, all exceptions have an associated priority, with:
. A lower priority value indicating a higher priority.
. Configurable priorities for all exceptions except reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see:

. Section 4.3.8: System handler priority registers.
. Section 4.2.6: Interrupt priority registers.
Note: Configurable priority values are in the range 0-192, in steps of 64. The reset, HardFault, and NMI exceptions,

with fixed negative priority values, always have higher priority than any other exception.

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher
priority than IRQ[O]. If both IRQ[1] and IRQ[O] are asserted, IRQ[1] is processed before IRQ[0].
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If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[O0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

2.3.6 Exception entry and return
Descriptions of exception handling use the following terms:

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled.

Preemption
When one exception preempts another, the exceptions are called nested exceptions. See Exception entry for
more information.
This occurs when the exception handler is completed, and:
. There is no pending exception with sufficient priority to be serviced.
Return . The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See Exception return for more information.

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
Tail-chaining exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous

exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
Late-arriving exception. State saving is not affected by late arrival because the state saved would be the same for both

exceptions. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules

apply.

Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:

. The processor is in thread mode.

. The new exception is of higher priority than the exception being handled, in which case the new exception
preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has greater priority than any limit set by the mask register, see
Exception mask register. An exception with less priority than this is pending but is not handled by the processor.
When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred to as stacking and the structure of
eight data words is referred to as a stack frame. The stack frame contains the following information:

Figure 9. Stack frame

- SP points here before
<previous> )
SP + PSR interrupt
0x1C ul
SP + 0x18 PC
Decreasing | SP+0x14 LR
memory SP + 0x10 R12
SP +
address 0x0C R3
SP + 0x08 R2
SP + 0x04 R1 SP points h ft
4 SP+0x00 RO SP points here after
interrupt

DT33829V1
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Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The stack frame is
aligned to a double-word address.

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from the vector table. When
stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes
an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler,
and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the exception
handler for this exception, and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception return

Exception return occurs when the processor is in handler mode and execution of one of the following instructions
attempts to set the PC to an EXC_RETURN value:

. A POP instruction that loads the PC.

. B PBX instruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism relies on
this value to detect when the processor has completed an exception handler. Bits[31:4] of an EXC_RETURN
value are 0xFFFFFEFF. When the processor loads a value matching this pattern to the PC it detects that the
operation is a not a normal branch operation and, instead that the exception is complete. As a result, it starts the
exception return sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor
mode, as Table 13. Exception return behavior shows.

Table 13. Exception return behavior

Return to Handler mode.

OxFFFFFFF1 Exception return gets state from the main stack.
Execution uses MSP after return.
Return to thread mode.

OxFFFFFFF9 Exception return gets state from MSP.
Execution uses MSP after return.
Return to thread mode.

O0xFFFFFFFD Exception return gets state from PSP.
Execution uses PSP after return.

All other values Reserved.

24 Fault handling

Faults are a subset of exceptions. See Section 2.3: Exception model. All faults result in the HardFault exception
being taken or cause Lockup if they occur in the NMI or HardFault handler. The faults are:

. Execution of an svcC instruction at a priority equal or higher than SVCall.

. Execution of a BKPT instruction without a debugger attached.

. A system-generated bus error on a load or store.

. Execution of an instruction from an XN memory address.

. Execution of an instruction from a location for which the system generates a bus fault.

. A system-generated bus error on a vector fetch.

. Execution of an Undefined instruction.

. Execution of an instruction when not in Thumb state as a result of the T-bit being previously cleared to 0.
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. An attempted load or store to an unaligned address.
. An MPU fault because of a privilege violation or an attempt to access an unmanaged region.
Note: Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault can preempt any exception

other than Reset, NMI, or another HardFault.

241 Lockup

The processor enters a Lockup state if a fault occurs when executing the NMI or HardFault handlers, or if the
system generates a bus error when unstacking the PSR on an exception return using the MSP. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until one
of the following occurs:

. It is reset.

. A debugger halts it.

. An NMI occurs and the current lockup is in the HardFault handler.
Note: If lockup state occurs in the NMI handler a subsequent NMI does not cause the processor to leave lockup state.
25 Power management

The Cortex®-M0+ processor sleep modes reduce power consumption:

. A sleep mode that stops the processor clock.

. A deep sleep mode that enters ultra low-power modes.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see Section 4.3.6: System control register
(SCR). When entering the deep sleep mode, the PDSS bit in the PWR_CR register selects entry in Stop or
Standby mode. See the reference manual chapter "low-power modes" for details.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

251 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wake-up events. For example, a debug operation wakes up the processor. For
this reason, software must be able to put the processor back into sleep mode after such an event. A program
might have an idle loop to put the processor back in to sleep mode.

Wait for interrupt

The Wait For Interrupt instruction, WrI, causes immediate entry to sleep mode. When the processor executes a
WEFI instruction, it stops executing instructions and enters sleep mode. For further information, see
Section 3.7.12: WFI.

Wait for event
The Wait For Event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit event
register. When the processor executes a WFE instruction, it checks the value of the event register:

0 The processor stops executing instructions and enters sleep mode.

1 The processor sets the register to zero and continues executing instructions without entering sleep mode.

See Section 3.7.11: WFE for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on execution of a WFE
instruction. Typically, this is because of the assertion of an external event, or because another processor in the
system has executed a SEV instruction, see Section 3.7.9: SEV. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of an exception
handler and returns to thread mode it immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an interrupt occurs.
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25.2 Wake-up from sleep mode
The conditions for the processor to wake up depend on the mechanism that caused it to enter sleep mode.

Wake-up from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this set the PRIMASK.PM bit to 1. If an interrupt arrives that is enabled
and has a higher priority than current exception priority, the processor wakes up but does not execute the
interrupt handler until the processor sets PRIMASK.PM to zero. For more information about PRIMASK, see
Exception mask register.

Wake-up from WFE

The processor wakes up if:

. It detects an exception with sufficient priority to cause exception entry.
. It detects an external event signal. See Section 2.5.3: The external event input.
. In a multiprocessor system, another processor in the system executes a SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more
information about the SCR. See Section 4.3.6: System control register (SCR).

253 The external event input

The processor provides an external event input signal. This signal can be generated by peripherals. Tie this signal
LOW if it is not used.

This signal can wake up the processor from WFE, or set the internal WFE event register to one to indicate that
the processor must not enter sleep mode on a later WFE instruction, see Wait for event.

254 Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE, and SEV instructions. The CMSIS provides the following
intrinsic functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WFI(void) // Wait for Interrupt

void  SEV(void) // Send Event
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3 Cortex®-M0+ instruction set

3.1 Instruction set summary

The processor implements a version of the thumb instruction set. Table 14. Cortex®-MO0+ instructions lists the
supported instructions.

In Table 14. Cortex®-MO+ instructions:

. Angle brackets, <>, enclose alternative forms of the operand.
. Braces, {}, enclose optional operands and mnemonic parts.
. The operands column is not exhaustive.

For more information on the instructions and operands, see the instruction descriptions.

Table 14. Cortex®-MO0+ instructions

ADCS {Rd,} Rn, Rm Add with carry N,Z,C,V | Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
ADD({S} {Rd,} Rn, <Rm|#imm> Add N,Z,C,V | Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
ADR Rd, label PC-relative address to register - Section 3.4.1: ADR

ANDS {Rd,} Rn, Rm Bitwise AND N,Z Section 3.5.2: AND, ORR, EOR, and BIC
ASRS {Rd,} Rm, <Rs|#imm> ' Arithmetic shift right N,Z,C | Section 3.5.3: ASR, LSL, LSR, and ROR
B{cc} label Branch {conditionally} - Section 3.6.1: B, BL, BX, and BLX

BICS {Rd,} Rn, Rm Bit clear N,Z Section 3.5.2: AND, ORR, EOR, and BIC
BKPT #imm Breakpoint - Section 3.7.1: BKPT

BL label Branch with link - Section 3.6.1: B, BL, BX, and BLX

BLX Rm Branch indirect with link - Section 3.6.1: B, BL, BX, and BLX

BX Rm Branch indirect - Section 3.6.1: B, BL, BX, and BLX

CMN Rn, Rm Compare negative N,Z,C,V | Section 3.5.4: CMP and CMN

CMP Rn, <Rm|#imm> Compare N,Z,C,V | Section 3.5.4: CMP and CMN

CPSID i Change processor state, disable interrupts - Section 3.7.2: CPS

CPSIE i Change processor state, enable interrupts - Section 3.7.2: CPS

DMB - Data memory barrier - Section 3.7.3: DMB

DSB - Data synchronization barrier - Section 3.7.4: DSB

EORS {Rd,} Rn, Rm Exclusive OR N,Z Section 3.5.2: AND, ORR, EOR, and BIC

ISB - Instruction synchronization barrier - Section 3.7.5: ISB

LDM Rn{l}, reglist Load multiple registers, increment after - Section 3.4.5: LDM and STM

LDR Rt, label Load register from PC-relative address - Section 3.4.2: LDR and STR, immediate offset
LDR Rt, [Rn, <Rm|#imm>] | Load register with word - Section 3.4.2: LDR and STR, immediate offset
LDRB Rt, [Rn, <Rm|#imm>] | Load register with byte - Section 3.4.2: LDR and STR, immediate offset
LDRH Rt, [Rn, <Rm|#imm>]  Load register with halfword - Section 3.4.2: LDR and STR, immediate offset
LDRSB Rt, [Rn, <Rm|#imm>] ' Load register with signed byte - Section 3.4.2: LDR and STR, immediate offset
LDRSH Rt, [Rn, <Rm|#imm>] ' Load register with signed halfword - Section 3.4.2: LDR and STR, immediate offset
LSLS {Rd,} Rn, <Rs|#imm> | Logical shift left N,Z,C | Section 3.5.3: ASR, LSL, LSR, and ROR
LSRS {Rd,} Rn, <Rs|#imm> | Logical shift right N,Z,C | Section 3.5.3: ASR, LSL, LSR, and ROR
MOV{S} Rd, Rm Move N,Z Section 3.5.5: MOV and MVN
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Rd, spec_reg Move to general register from special register | - Section 3.7.6: M

MSR spec_reg, Rm Move to special register from general register  N,Z,C,V  Section 3.7.7: MSR

MULS Rd, Rn, Rm Multiply, 32-bit result N,Z Section 3.5.6: MULS

MVNS Rd, Rm Bitwise NOT N,Z Section 3.5.5: MOV and MVN

NOP - No operation - Section 3.7.8: NOP

ORRS {Rd,} Rn, Rm Logical OR N,Z Section 3.5.2: AND, ORR, EOR, and BIC

POP reglist Pop registers from stack - Section 3.4.6: PUSH and POP

PUSH reglist Push registers onto stack - Section 3.4.6: PUSH and POP

REV Rd, Rm Byte-reverse word - Section 3.5.7: REV, REV16, and REVSH
REV16 Rd, Rm Byte-reverse packed halfwords - Section 3.5.7: REV, REV16, and REVSH
REVSH Rd, Rm Byte-reverse signed halfword - Section 3.5.7: REV, REV16, and REVSH
RORS {Rd,} Rn, Rs Rotate right N,Z,C | Section 3.5.3: ASR, LSL, LSR, and ROR
RSBS {Rd.} Rn, #0 Reverse subtract N,Z,C,V | Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
SBCS {Rd.} Rn, Rm Subtract with carry N,Z,C,V | Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
SEV - Send event - Section 3.7.9: SEV

ST™M Rn!, reglist Store multiple registers, increment after - Section 3.4.5: LDM and STM

STR Rt, [Rn, <Rm|#imm>]  Store register as word - Section 3.4.2: LDR and STR, immediate offset
STRB Rt, [Rn, <Rm|#imm>]  Store register as byte - Section 3.4.2: LDR and STR, immediate offset
STRH Rt, [Rn, <Rm|#imm>]  Store register as halfword - Section 3.4.2: LDR and STR, immediate offset
SUB({S} {Rd,} Rn, <Rm|#imm> | Subtract N,Z,C,V | Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
SvVC #imm Supervisor call - Section 3.7.10: SVC

SXTB Rd, Rm Sign extend byte - Section 3.5.8: SXT and UXT

SXTH Rd, Rm Sign extend halfword - Section 3.5.8: SXT and UXT

TST Rn, Rm Logical AND based test N,Z Section 3.5.9: TST

UXTB Rd, Rm Zero extend a byte - Section 3.5.8: SXT and UXT

UXTH Rd, Rm Zero extend a halfword - Section 3.5.8: SXT and UXT

WFE - Wait for event - Section 3.7.11: WFE.

WEFI - Wait for interrupt - Section 3.7.12: WFI
3.2 Intrinsic functions

ISO/IEC C code cannot directly access some Cortex®-MO0+ instructions. This section describes intrinsic functions
that can generate these instructions, provided by the CMSIS and that might be provided by a C compiler. If a C
compiler does not support an appropriate intrinsic function, the user might have to use the inline assembler to
access the relevant instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly

access:
Table 15. CMSIS intrinsic functions to generate some Cortex®-M0+ instructions
Instruction CMSIS intrinsic function
CPSIE i void  enable irg(void)
CPSID i void  disable irg(void)
ISB void _ ISB(void)
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DSB void _ DSB(void)

DMB void _ DMB(void)

NOP void _ NOP(void)

REV uint32 t  REV(uint32 t int value)
REV16 uint32 t  REV16(uint32 t int value)
REVSH uint32 t _ REVSH(uint32 t int value)
SEV void _ SEV (void)

WFE void  WFE (void)

WET void  WFI (void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR

instructions.
Table 16. CMSIS intrinsic functions to access the special registers
Special register Access CMSIS function
Read uint32_ t _ get PRIMASK (void)
PRIMASK
Write void  set PRIMASK (uint32 t value)
Read uint32 t  get CONTROL (void)
CONTROL
Write void _ set CONTROL (uint32_ t value)
Read uint32 t  get MSP (void)
MSP
Write void  set MSP (uint32 t TopOfMainStack)
Read uint32 t get PSP (void)
PSP
Write void _ set PSP (uint32_t TopOfProcStack)
3.3 About the instruction descriptions

The following sections give more information about using the instructions:
. Section 3.3.1: Operands.

. Section 3.3.2: Restrictions when using PC or SP.

. Section 3.3.3: Shift operations.

. Section 3.3.4: Address alignment.

. Section 3.3.5: PCrelative expressions.

. Section 3.3.6: Conditional execution.
3.31 Operands

An instruction operand can be an Arm® register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the other operands.

3.3.2 Restrictions when using PC or SP

Many instructions are unable to use, or have restrictions on whether the user can use, the program counter (PC)
or stack pointer (SP) for the operands or destination register. See instruction descriptions for more information.

Note: When the user update the PC with a BX, BLX, or POP instruction, the bit[0] of any address must be 1 for correct
execution. This is because this bit indicates the destination instruction set, and the Cortex-MO0+ processor only
supports thumb instructions. When a BL or BLX instruction writes the value of bit[0] into the LR it is automatically
assigned the value 1.
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3.33 Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed directly by the instructions ASR, LSR, LSL, and ROR and the result is written to a
destination register.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction description.
If the shift length is 0, no shift occurs. Register shift operations update the carry flag except when the specified
shift length is 0. The following subsections describe the various shift operations and how they affect the carry flag.
In these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result, and it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 10. ASR#3.

The user can use the ASR operation to divide the signed value in the register Rm by 2", with the result being
rounded towards negative-infinity.

When the instruction is ASRS the carry flag is updated to the last bit shifted out, bit[n-7], of the register Rm

Note: If n is 32 or more, then all the bits in the result are cleared to 0.
If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 10. ASR#3
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LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result, and it sets the lefthand n bits of the result to 0. See Figure 11. LSR#3.

The user can use the LSR operation to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm

Note: If n is 32 or more, then all the bits in the result are cleared to 0.
If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 11. LSR#3
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LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-
hand 32-n bits of the result, and it sets the righthand n bits of the result to 0. See Section 3.3.3: Shift operations.
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The user can use the LSL operation to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two's complement signed integer. Overflow can occur without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-n],
of the register Rm. These instructions do not affect the carry flag when used with LSL#0.

Note: If n is 32 or more, then all the bits in the result are cleared to 0.
If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 12. LSL #3
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ROR

Rotate right by n bits moves the left-hand 32-nbits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result, and it moves the righthand n bits of the register into the lefthand n bits of the result. See
Figure 12. LSL #3.

When the instruction is RORS the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

Note: If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
If ROR with shift length, n, greater than 32 is the same as ROR with shift length n-32.

Figure 13. ROR #3

Carry
Flag

|
31 543210|——r|
|Al A [ 4

DT33833V1

3.34 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, or multiple word access, or
where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

There is no support for unaligned accesses on the Cortex-MO+ processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

3.35 PCrelative expressions

A PCrelative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too large, the assembler
produces an error.
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Note: For most instructions, the value of the PC is the address of the current instruction plus 4 bytes.

The assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number,
or an expression of the form [PC,#imm].

3.3.6 Conditional execution
Most data processing instructions update the condition flags in the application program status register (APSR)
according to the result of the operation, see Section 2.1.3: Core registers. Some instructions update all flags, and
some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags that they affect.

The user can execute a conditional branch instruction, based on the condition flags set in another instruction,

either:
. Immediately after the instruction that updated the flags.
. After any number of intervening instructions that have not updated the flags.

On the Cortex-MO+ processor, conditional execution is available by using conditional branches.
This section describes:

. The condition flags.

. Condition code suffixes.

The condition flags

The APSR contains the following condition flags:

N  Set to 1 when the result of the operation was negative, cleared to 0 otherwise
Z  Setto 1 when the result of the operation was zero, cleared to 0 otherwise.

C  Setto 1 when the operation resulted in a carry, cleared to 0 otherwise.
\

Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see Application program status register.
A carry occurs:

. If the result of an addition is greater than or equal to 232.
. If the result of a subtraction is positive or zero.
. As the result of a shift or rotate instruction.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the operation
been performed at infinite precision, for example:

. If adding two negative values results in a positive value.

. If adding two positive values results in a negative value.

. If subtracting a positive value from a negative value generates a positive value.
. If subtracting a negative value from a positive value generates a negative value.

The compare operations are identical to subtracting, for cMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

Condition code suffixes

Conditional branch is shown in syntax descriptions as B{cond}. A branch instruction with a condition code is only
taken if the condition code flags in the APSR meet the specified condition, otherwise the branch instruction is
ignored. Table 17. Condition code suffixes shows the condition codes to use.

Table 17. Condition code suffixes also shows the relationship between condition code suffixes and the N, Z, C,
and V flags.
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Table 17. Condition code suffixes

EQ Z=1 Equal, last flag setting result was zero.

NE Z=0 Not equal, last flag setting result was non-zero.

CS or HS C= Higher or same, unsigned.

CC or LO Cc=0 Lower, unsigned.

MI N = Negative.

PL N=0 Positive or zero.

Vs V= Overflow.

vC V=0 No overflow.

HI C=1andZ=0 Higher, unsigned.

LS C=0or Z=1 Lower or same, unsigned.

GE N=V Greater than or equal, signed.

LT NI=V Less than, signed.

GT Z=0andN=V Greater than, signed.

LE Z=1orNI!=V Less than or equal, signed.

AL Can have any value Always. This is the default when no suffix is specified.
3.4 Memory access instructions

Table 18. Memory access instructions shows the memory access instructions.

Table 18. Memory access instructions

ADR Generate PC-relative address Section 3.4.1: ADR

LDM Load Multiple registers Section 3.4.5: LDM and STM

LDR{type} Load register using immediate offset Section 3.4.2: LDR and STR, immediate offset

LDR{type} Load register using register offset Section 3.4.3: LDR and STR, register offset

LDR Load register from PC-relative address Section 3.4.4: LDR, PCrelative

POP Pop registers from stack Section 3.4.6: PUSH and POP

PUSH Push registers onto stack Section 3.4.6: PUSH and POP

STM Store Multiple registers Section 3.4.5: LDM and STM

STR{type} Store register using immediate offset Section 3.4.2: LDR and STR, immediate offset

STR{type} Store register using register offset Section 3.4.3: LDR and STR, register offset
3.41 ADR

Generates a PC-relative address.
Syntax

ADR Rd, label

Where:

Rd Is the destination register.
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label Is a PCrelative expression. See Section 3.3.5: PCrelative expressions.
Operation
ADR generates an address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR facilitates the generation of positionindependent code, because the address is PCrelative.

If the user uses ADR to generate a target address for a BX or BLX instruction, the user must ensure that the bit[0]
of the address the user generates is set to 1 for correct execution.

Restrictions

In this instruction Rd must specify RO-R7. The data-value addressed must be word aligned and within 1020 bytes
of the current PC.

Condition flags
This instruction does not change the flags.
Examples:

ADR R1, TextMessage ; Write address value of a location labeled as;
TextMessage to R1
ADR R3, [PC,#996] ; Set R3 to the value of PC + 996.
3.4.2 LDR and STR, immediate offset
Load and store with immediate offset.

Syntax

LDR Rt, [<Rn | SP> {, #imm}]
LDR<B|H> Rt, [Rn {, #imm}]
STR Rt, [<Rn | SP>, {,#imm}]

STR<B|H> Rt, [Rn {,#imm}]

Where:

Rt Is the register to load or store.

Rn Is the register on which the memory address is based

imm Is an offset from Rn. If imm is omitted, it is assumed to be zero.
Operation

LDR, LDRB, and LDRH instructions load the register specified by Rt with either a word, byte, or halfword data
value from memory. Sizes less than word are zero extended to 32-bits before being written to the register
specified by Rt.

STR, STRB, and STRH instructions store the word, least-significant byte, or lower halfword contained in the
single register specified by Rt in to memory. The memory address, to load from or store to, is the sum of the value
in the register specified by either Rn or SP and the immediate value imm

Restrictions

In these instructions:
. Rt and Rn must only specify RO-R7.
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. imm must be between:

- 0 and 1020 and an integer multiple of four for DR and STR using SP as the base register.

0 and 124 and an integer multiple of four for LDR and STR using R0O-R7 as the base register.
0 and 62 and an integer multiple of two for LDRH and STRH.
- 0 and 31 for LDRB and STRB.

. The computed address must be divisible by the number of bytes in the transaction, see
Section 3.3.4: Address alignment.

Condition flags

These instructions do not change the flags.
Examples
LDR R4, [R7 ; Loads R4 from the address in R7.
STR R2, [RO, #conststruc] ; conststruc is an expression evaluating
; to a constant in the range 01020.
343 LDR and STR, register offset
Load and store with register offset.
Syntax
LDR Rt, [Rn, Rm]
LDR<B|H> Rt, [Rn, Rm]
LDR<SB|SH> Rt, [Rn, Rm]
STR Rt, [Rn, Rm]

STR<B|H> Rt, [Rn, Rm]

Where:
Rt Is the register to load or store.
Rn Is the register on which the memory address is based
Rm s a register containing a value to be used as the offset
Operation

LDR, LDRB, LDRH, LDRSB and LDRSH load the register specified by Rf with either a word, zero extended
byte, zero extended halfword, sign extended byte or sign extended halfword value from memory.

STR, STRB and STRH store the word, least-significant byte or lower halfword contained in the single register
specified by Rt into memory.

The memory address to load from or store to is the sum of the values in the registers specified by Rn and Rm.
Restrictions

In these instructions:
. Rt, Rn, and Rm must only specify RO-R7.

. The computed memory address must be divisible by the number of bytes in the load or store, see
Section 3.3.4: Address alignment.

Condition flags

These instructions do not change the flags.
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Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to
; sum of R5 and R1
LDRSH R1, [R2, R3] ; Load a halfword from the memory address
; specified by (R2 + R3), sign extend to 32-bits
; and write to RI1.
3.44 LDR, PCrelative

Load register (literal) from memory.

Syntax

LDR Rt, label

Where:

Rt Is the register to load

label Is a PCrelative expression. See Section 3.3.5: PCrelative expressions.
Operation

Loads the register specified by Rt from the word in memory specified by /abel.

Restrictions

In these instructions, label must be within 1020 bytes of the current PC and word aligned.

Condition flags

These instructions do not change the flags.

Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address

; labelled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).
3.4.5 LDM and STM
Load and Store Multiple registers.
Syntax

ILDM Rn{!}, reglist

STM Rn!, reglist

Where:

Rn Is the register on which the memory addresses are based.

! Writeback suffix.

reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register ranges. It must

be comma separated if it contains more than one register or register range, see Examples.
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LDMIA and LDMED are synonyms for LDM. LDMIA refers to the base register being Incremented After each
access. LDMFD refers to its use for popping data from full descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being incremented after each access.
STMEA refers to its use for pushing data onto empty ascending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value in the register
specified by Rn to the value in the register specified by Rn + 4 * (n-1), where n is the number of registers in
reglist. The accesses happens in order of increasing register numbers, with the lowest numbered register using
the lowest memory address and the highest number register using the highest memory address. If the writeback
suffix is specified, the value in the register specified by Rn + 4 *n is written back to the register specified by Rn.

Restrictions

In these instructions:
. reglist and Rn are limited to RO-R7.

. The writeback suffix must always be used unless the instruction is an 1.DM where reglist also contains Rn,
in which case the writeback suffix must not be used.

. The value in the register specified by Rn must be word aligned. See Section 3.3.4: Address alignment for
more information.

. For STV, if Rn appears in reglist, then it must be the first register in the list.

Condition flags

These instructions do not change the flags.

Examples

LDM RO, {RO,R3,R4} ; LDMIA is a synonym for LDM

STMIA R1!, {R2R4,R6}

Incorrect examples

STM R5!, {R4,R5,R6} ;Value stored for R5 is unpredictable
LDM R2,{} ; There must be at least one register in the list
3.4.6 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.
Syntax
PUSH reglist

POP reglist

Where:

Is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma separated if

reglist . . ) .
g it contains more than one register or register range.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.
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POP loads registers from the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value in the SP
register as the lowest memory address, implementing a full-descending stack. On completion, PUSH updates the
SP register to point to the location of the lowest store value, POP updates the SP register to point to the location
above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP instruction
has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit must be 1 to ensure
correct operation.

Restrictions

In these instructions:

. reglist must use only RO-R7.

. The exception is LR for a PUSH and PC for a POP.
Condition flags

These instructions do not change the flags.

Examples
PUSH {RO,R4R7} ; Push RO,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {RO,R6,PC} ; Pop r0O,r6 and PC from the stack, then branch to
; the new PC.
3.5 General data processing instructions

Table 19. Data processing instructions shows the data processing instructions:

Table 19. Data processing instructions

ADCS Add with carry Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
ADD{S} Add Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
ANDS Logical AND Section 3.5.2: AND, ORR, EOR, and BIC
ASRS Arithmetic shift right Section 3.5.3: ASR, LSL, LSR, and ROR
BICS Bit clear Section 3.5.2: AND, ORR, EOR, and BIC

CMN Compare negative Section 3.5.4: CMP and CMN

CMP Compare Section 3.5.4: CMP and CMN

EORS Exclusive OR Section 3.5.2: AND, ORR, EOR, and BIC
LSLS Logical shift left Section 3.5.3: ASR, LSL, LSR, and ROR
LSRS Logical shift right Section 3.5.3: ASR, LSL, LSR, and ROR

MOV {S} Move Section 3.5.5: MOV and MVN

MULS Multiply Section 3.5.6: MULS

MVNS Move NOT Section 3.5.5: MOV and MVN

ORRS Logical OR Section 3.5.2: AND, ORR, EOR, and BIC

REV Reverse byte order in a word Section 3.5.7: REV, REV16, and REVSH
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REV16 Reverse byte order in each halfword Section 3.5.7: REV, REV16, and REVSH
REVSH Reverse byte order in bottom halfword and sign extend Section 3.5.7: REV, REV16, and REVSH
RORS Rotate right Section 3.5.3: ASR, LSL, LSR, and ROR
RSBS Reverse subtract Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
SBCS Subtract with carry Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
SUBS Subtract Section 3.5.1: ADC, ADD, RSB, SBC, and SUB
SXTB Sign extend a byte Section 3.5.8: SXT and UXT
SXTH Sign extend a halfword Section 3.5.8: SXT and UXT
UXTB Zero extend a byte Section 3.5.8: SXT and UXT
UXTH Zero extend a halfword Section 3.5.8: SXT and UXT
TST Test Section 3.5.9: TST

3.51 ADC, ADD, RSB, SBC, and SUB

Add with carry, add, reverse subtract, subtract with carry, and subtract.
Syntax

ADCS {Rd, } Rn, Rm

ADD{S} {Rd,} Rn, <Rm|#imm>

RSBS  {Rd,} Rn, Rm, #0

SBCS  {Rd,} Rn, Rm

SUB{S} {Rd,} Rn, <Rm|#imm>

Where:

S Causes an ADD or SUB instruction to update flags.
Rd Specifies the result register.

reglist Specifies the first source register.

Imm Specifies a constant immediate value.

When the optional Rd register specifier is omitted, it is assumed to take the same value as Rn, for example ADDS
R1,R2 is identical to ADDS R1,R1,R2.

Operation
The ADCS instruction adds the value in Rn to the value in Rm, adding another one if the carry flag is set, places the
result in the register specified by Rd and updates the N, Z, C, and V flags.

The ADD instruction adds the value in Rn to the value in Rm or an immediate value specified by imm and places
the result in the register specified by Rd.

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C, and V flags.

The RSBS instruction subtracts the value in Rn from zero, producing the arithmetic negative of the value, and
places the result in the register specified by Rd and updates the N, Z, C, and V flags.

The sBCS instruction subtracts the value of Rm from the value in Rn, if the carry flag is clear, the result is reduced
by one. It places the result in the register specified by Rd and updates the N, Z, C, and V flags.

The sUB instruction subtracts the value in Rm or the immediate specified by imm. It places the result in the
register specified by Rd.
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The SUBS instruction performs the same operation as SUB and also updates the N, Z, C, and V flags.

Use ADC and SBC to synthesize multiword arithmetic, see Examples.
See also Section 3.4.1: ADR.
Restrictions

Table 20. ADC, ADD, RSB, SBC and SUB operand restrictions lists the legal combinations of register specifiers
and immediate values that can be used with each instruction.

Table 20. ADC, ADD, RSB, SBC and SUB operand restrictions
rsicion 78180 __JRm i [Resviions
ADCS RO-R7 RO-R7 RO-R7 - Rd and Rn must specify the same register.

Rd and Rn must specify the same register.
Rn and Rm must not both specify PC.

R0-R15 | RO-R15 RO-PC -

AP RO-R7 SP or PC - 0-1020 | Immediate value must be an integer multiple of four.
SP SP - 0-508 Immediate value must be an integer multiple of four.
R0O-R7 R0O-R7 - 0-7 -
ADDS RO-R7 RO-R7 - 0-255 Rd and Rn must specify the same register.
RO-R7 RO-R7 RO-R7 - -
RSBS RO-R7 RO-R7 - - -
SBCS RO-R7 RO-R7 RO-R7 - Rd and Rn must specify the same register.
SUB SP SP - 0-508 Immediate value must be an integer multiple of four.
RO-R7 RO-R7 - 0-7 -
SUBS RO-R7 RO-R7 - 0-255 Rd and Rn must specify the same register.
RO-R7 RO-R7 RO-R7 - -
Examples

64-bit addition shows two instructions that add a 64bit integer contained in RO and R1 to another 64bit integer
contained in R2 and R3, and place the result in RO and R1.

64-bit addition

ADDS RO, RO, R2 ; add the least significant words

ADCS R1, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. 96-bit subtraction shows instructions that subtract a
96bit integer contained in R1, R2, and R3 from another contained in R4, R5, and R6. The example stores the
result in R4, R5, and R6.

96-bit subtraction

SUBS R4, R4, R1 ; subtract the least significant words
SBCS R5, R5, R2 ; subtract the middle words with carry
SBCS R6, R6, R3 ; subtract the most significant words with carry

Arithmetic negation shows the RSBS instruction used to perform a 1's complement of a single register.
Arithmetic negation

RSBS R7, R7, #0 ; subtract R7 from zero
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3.5.2 AND, ORR, EOR, and BIC
Logical AND, OR, Exclusive OR, and Bit Clear.

Syntax

ANDS {Rd,} Rn, Rm
ORRS {Rd,} Rn, Rm
EORS {Rd,} Rn, Rm

BICS {Rd,} Rn, Rm
Where:

Rd Is the destination register.

Rn Is the register holding the first operand and is the same as the destination register.

Rm  Second register

Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive OR operations on the
values in Rn and Rm.

The BIC instruction performs an AND operation on the bits in Rn with the logical negation of the corresponding
bits in the value of Rm.

The condition code flags are updated on the result of the operation, see Condition flags.

Restrictions

In these instructions, Rd, Rn, and Rm must only specify RO-R7.

Condition flags

These instructions:
Update the N and Z flags according to the resullt.
Do not affect the C or V flag.

Examples
ANDS R2, R2, R1
ORRS R2, R2, R5
ANDS R5, R5, R8
EORS R7, R7, R6
BICS RO, RO, RI

3.5.3 ASR, LSL, LSR, and ROR

Arithmetic shift right, logical shift left, logical shift right, and rotate right.

Syntax

ASRS {Rd,} Rm, Rs

ASRS {Rd,} Rm, #imm

LSLS {Rd,} Rm, Rs
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LSLS {Rd,} Rm, #imm

LSRS {Rd,} Rm, Rs

LSRS {Rd,} Rm, #imm

RORS {Rd,} Rm, Rs

Where:
Rd Is the destination register. If Rd is omitted, it is assumed to take the same value as Rm.
Rm Is the register holding the value to be shifted.
Rs Is the register holding the shift length to apply to the value in Rm
Is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
Imm
LSL shift length from 0 to 31
LSR shift length from 1 to 32.
Note: MOVS Rd, Rm is a pseudonym for LSLS Rd, Rm, #0.
Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-right, or a right-rotation
of the bits in the register Rm by the number of places specified by the immediate imm or the value in the least-
significant byte of the register specified by Rs.

For details on what result is generated by the different instructions, see Section 3.3.3: Shift operations.

Restrictions

In these instructions, Rd, Rm, and Rs must only specify RO-R7. For non-immediate instructions, Rd and Rm must
specify the same register.

Condition flags

These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0, see Section 3.3.3: Shift
operations. The V flag is left unmodified.

Examples
ASRS R7, R5, #9 ; Arithmetic shift right by 9 bits
LSLS Rl, R2, #3 ; Logical shift left by 3 bits with flag update
LSRS R4, R5, #6 ; Logical shift right by 6 bits
RORS R4, R4, R6 ; Rotate right by the value in the bottom byte of R6.
3.54 CMP and CMN
Compare and compare negative.
Syntax
CMN Rn, Rm
CMP Rn, #imm

CMP Rn, Rm
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Where:
Rn Is the register holding the first operand.
Rm Is the register to compare with.
Imm Is the immediate value to compare with.
Operation

These instructions compare the value in a register with either the value in another register or an immediate value.
They update the condition flags on the result, but do not write the result to a register.

The cMP instruction subtracts either the value in the register specified by Rm, or the immediate imm from the
value in Rn and updates the flags. This is the same as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Rm to the value in Rn and updates the flags. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions

For the:
. CMN instruction Rn, and Rm must only specify RO-R7.
. CMP instruction:

- Rn and Rm can specify R0-R14.

- Immediate must be in the range 0-255.

Condition flags

These instructions update the N, Z, C, and V flags according to the result.

Examples
CMP R2, RO
CMN RO, R2
3.5.5 MOV and MVN

Move and move NOT.

Syntax

MOV{S} Rd, Rm
MOVS Rd, #imm
MVNS Rd, Rm

Where:

Is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see

S Section 3.3.6: Conditional execution.

Rd s the destination register.
Rm s aregister.

Imm Is any value in the range 0-255.

Operation

The MOV instruction copies the value of Rm into Rd.
The MOVS instruction performs the same operation as the MOV instruction, but also updates the N and Z flags.
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The MVSN instruction takes the value of Rm, performs a bitwise logical negate operation on the value, and places
the result into Rd.

Restrictions

In these instructions, Rd, and Rm must only specify RO-R7.

When Rd is the PC in a MOV instruction:

. Bit[0] of the result is discarded.

. A branch occurs to the address created by forcing the bit[0] of the result to 0. The T-bit remains unmodified.

Note: Though it is possible to use MOV as a branch instruction, Arm® strongly recommends the use of a BX, or BLX
instruction to branch for software portability.

Condition flags

If S is specified, these instructions:
. update the N and Z flags according to the result
. do not affect the C or V flags.

Example
MOVS RO, #0x000B ; Write value of 0x000B to RO, flags get updated
MOVS R1l, #0x0 ; Write value of zero to R1l, flags are updated
MOV R10, R12 ; Write value in R12 to R10, flags are not updated
MOVS R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, RO ; Write inverse of RO to the R2 and update flags

3.5.6 MULS

Multiply using 32bit operands, and producing a 32-bit result.

Syntax

MULS Rd, Rn, Rm

Where:

Rd Is the destination register.

Rn, Rm Ire registers holding the values to be multiplied.

Operation

The MUL instruction multiplies the values in the registers specified by Rn and Rm, and places the least significant
32 bits of the result in Rd. The condition code flags are updated on the result of the operation, see
Section 3.3.6: Conditional execution.

The results of this instruction do not depend on whether the operands are signed or unsigned.
Restrictions

In this instruction:
. Rd, Rn, and Rm must only specify RO-R7.
. Rd must be the same as Rm.

Condition flags

This instruction:
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. Updates the N and Z flags according to the result.

. Does not affect the C or V flags.
Examples
MULS RO, R2, RO ; Multiply with flag update, RO = RO x R2
3.5.7 REV, REV16, and REVSH

Reverse bytes.
Syntax

REV Rd, Rn
REV16 Rd, Rn

REVSH Rd, Rn

Where:
Rd Is the destination register.
Rn Is the source register.
Operation

Use these instructions to change the endianness of data:
RER

REV Converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.

Converts two packed 16-bit big-endian data into little-endian data or two packed 16-bit little-endian data into big-

REV16 endian data.

Converts 16-bit signed big-endian data into 32-bit signed little-endian data or 16-bit signed little-endian data into 32-

REVSH bit signed big-endian data.

Restrictions

In these instructions, Rd, and Rn must only specify RO-R7.

Condition flags

These instructions do not change the flags.

Examples
REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5 ; Reverse signed halfword

3.5.8 SXT and UXT

Sign extend and zero extend.

Syntax

SXTB Rd, Rm

SXTH Rd, Rm

PM0223 - Rev 9 page 41/80



m PM0223

Cortex®-MO0+ instruction set

UXTB Rd, Rm

UXTH Rd, Rm

Where:

Rd Is the destination register.

Rm Is the register holding the value to be extended.
Operation

. These instructions extract bits from the resulting value:
. SXTB extracts bits[7:0] and sign extends to 32 bits.

. UXTB extracts bits[7:0] and zero extends to 32 bits.

. SXTH extracts bits[15:0] and sign extends to 32 bits.

. UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

In these instructions, Rd and Rm must only specify RO-R7.

Condition flags

These instructions do not affect the flags.

Examples
SXTH R4, R6 ; Obtain the lower halfword of the
; value in R6 and then sign extend to
; 32 bits and write the result to R4.
UXTB R3, R1 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3
3.5.9 TST
Test bits.
Syntax

TST Rn, Rm

Where:
Rn Is the register holding the first operand.
Rm The register to test against.
Operation

This instruction tests the value in a register against another register. It updates the condition flags based on the
result, but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value in Rm. This is the same
as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with a register that has that bit set to 1 and all other
bits cleared to 0.
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Restrictions

In these instructions, Rn and Rm must only specify RO-R7.

Condition flags

This instruction:
. updates the N and Z flags according to the result
. does not affect the C or V flags.

Examples

TST RO, Rl ; Perform bitwise AND of RO value and Rl value,

; condition code flags are updated but result is discarded.

3.6 Branch and control instructions
Table 21. Branch and control instructions shows the branch and control instructions:

Table 21. Branch and control instructions

B{cc} Branch {conditionally} Section 3.6.1: B, BL, BX, and BLX

BL Branch with Link Section 3.6.1: B, BL, BX, and BLX

BLX Branch indirect with Link Section 3.6.1: B, BL, BX, and BLX

BX Branch indirect Section 3.6.1: B, BL, BX, and BLX
3.6.1 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label
BL label
BX Rm

BLX Rm

Where:

Cond Is an optional condition code, see Section 3.3.6: Conditional execution.
label Is a PCrelative expression. See Section 3.3.5: PCrelative expressions.

Rm Is a register providing the address to branch to.

Operation

All these instructions cause a branch to the address indicated by the /abel or contained in the register specified by
Rm. In addition:

. the BL and BLX instructions write the address of the next instruction to LR, the link register R14.

. the BX and BLX instructions result in a HardFault exception if bit[0] of Rmis 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for use by a
subsequent POP {PC} or BX instruction to perform a successful return branch.

Table 22. Branch ranges shows the ranges for the various branch instructions.
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Table 22. Branch ranges

e =

B label -2 KB to +2 KB.

Bcond /abel -256 bytes to +254 bytes.
BL /abel -16 MB to +16 MB.

BX Rm Any value in register.
BLX Rm Any value in register.

Restrictions

In these instructions:
. Do not use SP or PC in the BX or BLX instruction.

. For BX and BLX, the bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the EPSR T-bit
and is discarded from the target address.

Note: Becond is the only conditional instruction on the Cortex-M0+ processor.

Condition flags

These instructions do not change the flags.

Examples

B loopA ; Branch to loopA

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR

BX LR ; Return from function call

BLX RO ; Branch with link and exchange (Call) to an address stored
; in RO

BEQ labelD ; Conditionally branch to labelD if last flag setting
; instruction set the Z flag, else do not branch.

3.7 Miscellaneous instructions

Table 23. Miscellaneous instructions shows the remaining Cortex®-MO0+ instructions.

Table 23. Miscellaneous instructions

BKPT Breakpoint Section 3.7.1: BKPT
CPSID Change processor state, disable interrupts Section 3.7.2: CPS
CPSIE Change processor state, enable interrupts Section 3.7.2: CPS
DMB Data memory barrier Section 3.7.3: DMB
DSB Data synchronization barrier Section 3.7.4: DSB
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ISB Instruction synchronization barrier Section 3.7.5: ISB
MRS Move from special register to register Section 3.7.6: MRS
MSR Move from register to special register Section 3.7.7: MSR
NOP No operation Section 3.7.7: MSR
SEV Send event Section 3.7.9: SEV
svC Supervisor call Section 3.7.10: SVC
WFE Wait for event Section 3.7.11: WFE
WEI Wait for interrupt Section 3.7.12: WFI
3.71 BKPT

Breakpoint.
Syntax

BKPT #imm
Where:

Imm Is an integer in the range 0-255.
Operation

The BKPT instruction causes the processor to enter debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

Imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The processor might also produce a HardFault or go in to Lockup if a debugger is not attached when a BKPT
instruction is executed. See Section 2.4.1: Lockup for more information.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

BKPT #0 ; Breakpoint with immediate value set to 0xO0.
3.7.2 CPS
Change processor state.
Syntax
CPSID i
CPSIE i

Operation

cPs changes the PRIMASK special register values. CPSID causes interrupts to be disabled by setting PRIMASK.
CPSIE cause interrupts to be enabled by clearing PRIMASK. See Exception mask register for more information
about these registers.
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Restrictions

If the current mode of execution is not privileged, then this instruction behaves as a NOP and does not change the
current state of PRIMASK.

Condition flags
This instruction does not change the condition flags.
Examples

CPSID i ; Disable all interrupts except NMI (set PRIMASK.PM)

CPSIE i ; Enable interrupts (clear PRIMASK.PM)

3.7.3 DMB
Data memory barrier.

Syntax

DMB

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear in program order
before the DMB instruction are observed before any explicit memory accesses that appear in program order after
the DMB instruction. DMB does not affect the ordering of instructions that do not access memory.

Restrictions

There are no restrictions.

Condition flags
This instruction does not change the flags.
Examples

DMB ; Data memory barrier
3.74 DSB
Data synchronization barrier.

Syntax

DSB

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit
memory accesses before it complete.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.
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Examples

DSB ; Data synchronisation barrier

3.75 ISB
Instruction synchronization barrier.

Syntax

ISB

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

ISB ; Instruction synchronization barrier

3.7.6 MRS
Move the contents of a special register to a general purpose register.
Syntax
MRS Rd, spec_reg

Where:

Rd Is the general purpose destination register.

spec re Is one of the special purpose registers: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PEC_®9  pRIMASK, or CONTROL.

Operation

MSR stores the contents of a special-purpose register to a general purpose register. The MSR instruction can be
combined with the MSR instruction to produce read-modify-write sequences, which are suitable for modifying a
specific flag in the PSR.

See Section 3.7.7: MSR.
Restrictions

In this instruction, Rd must not be SP or PC.

If the current mode of execution is not privileged, then the values of all registers other than the APSR read as
zero.

Condition flags

This instruction does not change the flags.
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Examples

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

3.7.7 MSR
Move the contents of a generalpurpose register into the specified special register.

Syntax
MSR spec_reg, Rn
Where:

Rn Is the general-purpose source register.

spec re Is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PEC_®9 pRIMASK, or CONTROL.

Operation

MSR updates one of the special registers with the value from the register specified by Rn.
See Section 3.7.6: MRS.

Restrictions

In this instruction, Rn must not be SP and must not be PC.

If the current mode of execution is not privileged, then all attempts to modify any register other than the APSR are
ignored.

Condition flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, Rl ; Read Rl value and write it to the CONTROL register.

3.7.8 NOP
No operation.

Syntax

NOP

Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor might remove it from the
pipeline before it reaches the execution stage.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

NOP ; No operation
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3.7.9 SEV
Send Event.

Syntax

SEV

Operation

SEV causes an event to be signaled to all processors within a multiprocessor system. It also sets the local event
register, see Section 2.5: Power management.

See also Section 3.7.11: WFE.

Restrictions

There are no restrictions.

Condition flags
This instruction does not change the flags.
Examples

SEV ; Send event

3.7.10 SvC
Supervisor call.

Syntax
SVC #imm

Where:

Imm Is an integer in the range 0255.

Operation

The SVC instruction causes the SVC exception.

Imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what
service is being requested.

Restrictions

Executing the SVC instruction, while the current execution priority level is greater than or equal to that of the
SVCall handler, results in a fault being generated.

Condition flags

This instruction does not change the flags.

Examples

SVC #0x32 ; Supervisor call (SVC handler can extract the immediate value.

; by locating it through the stacked PC)

3.7.11 WFE
Wait for event.
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Syntax

WFE

Operation

If the event register is 0, WFE suspends execution until one of the following events occurs:

. An exception, unless masked by the exception mask registers or the current priority level.

. An exception enters the pending state, if SEVONPEND in the system control register is set.

. A debug entry request, if debug is enabled.

. An event signaled by a peripheral or another processor in a multiprocessor system using the SEV
instruction.

If the event register is 1, WFE clears it to 0 and completes immediately.
For more information, see Section 2.5: Power management.

Note: WEFE is intended for power saving only. When writing the software, it is assumed that WFE might behave as
NOP.

Restrictions

There are no restrictions.

Condition flags
This instruction does not change the flags.
Examples

WFE ; Wait for event

3.712 WFI
Wait for interrupt.
Syntax

WEI

Operation

WEFI suspends execution until one of the following events occurs:

. An exception.

. An interrupt becomes pending which would preempt if PRIMASK.PM was clear.
. A debug entry request, regardless of whether debug is enabled.

Note: WFI is intended for power saving only. When writing software, it is assumed that WFI might behave as a NOP
operation.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

WEI ; Wait for interrupt
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4 Cortex®-M0+ core peripherals

4.1 About the Cortex®-M0+ core peripherals
The address map of the private peripheral bus (PPB) is:

Table 24. Core peripheral register regions

0xEOOOEO008-0xEOOOEQOQOF System Control Block Table 29. Summary of the SCB registers
0xEOOOEO010-0xEOOOEQLF Reserved -

O0xEOOOEO010-0xEOOOEOQ1F System timer Table 32. System timer registers summary
0xEOOOE100-0xEOOOE4EF Nested vectored interrupt controller Table 25. NVIC register summary
0xEOOOEDOO-0xEOOOED3F System control block Table 29. Summary of the SCB registers
O0xEOOOED90-0xEOOOEDBS Memory protection unit Table 34. MPU registers summary
0xEOOOEF00-0xEOOOEF03 Nested vectored interrupt controller Table 25. NVIC register summary

1. Software can read the MPU type register at 0OXEOOOED9O0 to test for the presence of a memory protection unit (MPU).

In register descriptions, the register type is described as follows:

RW Read and write.

RO Read-only.

WO Write-only.

. the required privilege gives the privilege level required to access the register, as follows:
Privileged

Only privileged software can access the register.

Unprivileged

Both unprivileged and privileged software can access the register.

4.2 Nested vectored interrupt controller
This section describes the Nested vectored interrupt controller (NVIC) and the registers it uses. The NVIC
supports:
. 32 interrupts.
. A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level corresponds to a
lower priority, so level 0 is the highest interrupt priority.
. Level and pulse detection of interrupt signals.
. Interrupt tail-chaining.
. An external non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC
registers is shown in the table below:
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Table 25. NVIC register summary

S g

0xEOO0E100 NVIC_ISER 0x00000000 Section 4.2.2: Interrupt set-enable register

0xEO00E180 NVIC_ICER RW 0x00000000 Section 4.2.3: Interrupt clear-enable register

O0xEO000E200 NVIC_ISPR RW 0x00000000 Section 4.2.4: Interrupt set-pending register

0xEO00E280 NVIC_ICPR RW 0x00000000 Section 4.2.5: Interrupt clear-pending register

0xEOOOE400-0xEO00E41C NVIC_IPRO-7 RW 0x00000000 Section 4.2.6: Interrupt priority registers
4.21 Accessing the Cortex®-M0+ NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex®-M profile processors.
To access the NVIC registers when using CMSIS, use the following functions:

Table 26. CMSIS access NVIC functions

void NVIC EnableIRQ (IRQn Type IRQn) Enables an interrupt or exception.

void NVIC DisableIRQ(IRQn Type IRQn) Disables an interrupt or exception.

void NVIC SetPendingIRQ (IRQn Type IRQn) Sets the pending status of interrupt or exception to 1.

void NVIC ClearPendingIRQ (IRQn Type IRQn) Clears the pending status of interrupt or exception to 0.

uint32_t NVIC GetPendingIRQ (IRQn_Type Reads the pending status of interrupt or exception. This function returns
TIROQON) nonzero value if the pending status is set to 1.

Sets the priority of an interrupt or exception with configurable priority level

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) 0 1

Reads the priority of an interrupt or exception with a configurable priority

uint32_t NVIC_GetPriority(IRQn_Type IRQn) level. This function returns the current priority level.

Note: The input parameter IRQn is the IRQ number, see Table 12. Properties of the different exception types.

4.2.2 Interrupt set-enable register

The NVIC_ISER enables interrupts, and shows which interrupts are enabled. See the register summary in
Table 25. NVIC register summary for the register attributes.

The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SETENA[31:16]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SETENA[15:0]
rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs
Bits 31:0 SETENA: Interrupt set-enable bits
Write:
0: No effect

1: Enable interrupt
Read:
0: Interrupt disabled

PM0223 - Rev 9 page 52/80



‘_ PM0223
,’ Cortex®-MO0+ core peripherals

1: Interrupt enabled

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not
enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the
interrupt, regardless of its priority.

423 Interrupt clear-enable register

The NVIC_ICER disables interrupts, and show which interrupts are enabled. See the register summary in
Table 25. NVIC register summary for the register attributes.

The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CLRENA[31:16]
rcwl rcwl rcwl rcwl rcwl rcw!l rcwl rcwl | rcwl rcwl rcwl rcwl rcwl rcwl rcwl rc_wil
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CLRENA[15:0]

rc wl [ rcwl rcwl rcwl rcwl rcwl rcwl rcwl | rcwl rcwl rcwl rcwl rcwl rcwl rcwl rcwl

Bits 31:0 CLRENA: Interrupt clear-enable bits
Write:
0: No effect
1: Disable interrupt
Read:
0: Interrupt disabled

1: Interrupt enabled

424 Interrupt set-pending register

The NVIC_ISPR forces interrupts into the pending state, and shows which interrupts are pending. See the register
summary in Table 25. NVIC register summary for the register attributes.

The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SETPENDI[31:16]

rs rs rs rs rs rs rs rs rs rs7 rs rs rs rs rs rs
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SETPENDI[15:0]
rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs
Bits 31:0 SETPEND: Interrupt set-pending bits

Write:

0: No effect

1: Change interrupt state to pending

Read:

0: Interrupt is not pending

1: Interrupt is pending

Note: Writing 1 to the NVIC_ISPR bit corresponding to:
. An interrupt that is pending has no effect.
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. A disabled interrupt sets the state of that interrupt to pending.

4.2.5 Interrupt clear-pending register
The NVIC_ICPR removes the pending state from interrupts, and shows which interrupts are pending. See the
register summary in Table 25. NVIC register summary for the register attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CLRPEND[31:16]

rc wl [ rcwl ' rcwl rcwl rcwl rcwl rcwl rcwl | rcwl rcwl rcwl rcwl rcwl rcwl rcwl rcwl

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CLRPEND[15:0]

rcwl rcwl rcwl rcwl rcwl rcwl rcwl rcwl | rcwl rcwl rcwl rcwl rcwl rcwl rcwl rcwi

Bits 31:0 CLRPEND: Interrupt clear-pending bits
Write:
0: No effect
1: Removes pending state and interrupt.
Read:
0: Interrupt is not pending

1: Interrupt is pending
Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

4.2.6 Interrupt priority registers

The NVIC_IPRO-NVIC_IPRY registers provide an 8-bit priority field for each interrupt. These registers are only
word-accessible. See the register summary in Table 25. NVIC register summary for their attributes. Each register
holds four priority fields as shown:

Figure 14. Priority fields

31 2423 1615 8 7 0
NV|C_|PF7< PRI 31 PRI 30 PRI 29 PRI_28
NVIC_IPE PRI (4n-+3) PRI (4n+2) PRI (4n+1) PRI_(4n)
NVIC_IPI; PRI 3 PRI 2 PRI_I LY

DT33834V1
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Table 27. NVIC_IPRx bit assignments

. Priority, byte
[31:24] offset 3

23:16 Priority, byte
[23:16] offset 2 Each priority field holds a priority value, 0-192. The lower the value, the greater the priority of the corresponding
interrupt. The processor implements only bits[7:6] of each field, bits [5:0] read as zero and ignore writes. This

[15:8] (ljfrfi::tt% byte means writing 255 to a priority register saves value 192 to the register.

Priority, byte

[7:0] offset 0

See Section 4.2.1: Accessing the Cortex®-M0+ NVIC registers using CMSIS for more information about the
access to the interrupt priority array, which provides the software view of the interrupt priorities.

Find the NVIC_IPR number and byte offset for interrupt M as follows:
. The corresponding NVIC_IPR number, N, is given by N = N DIV 4.
. The byte offset of the required priority field in this register is M MOD 4, where:
- Byte offset O refers to register bits[7:0].
- Byte offset 1 refers to register bits[15:8].
- Byte offset 2 refers to register bits[23:16].
- Byte offset 3 refers to register bits[31:24].

4.2.7 Level-sensitive and pulse interrupts

Cortex-MO0+ interrupts are both level-sensitive and pulse-sensitive. Pulse interrupts are also described as edge-
triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this
happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an
interrupt signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the
interrupt, the peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects
the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see Hardware
and software control of interrupts. For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

Hardware and software control of interrupts

The Cortex-MO0+ processor latches all interrupts. A peripheral interrupt becomes pending for one of the following

reasons:
. The NVIC detects that the interrupt signal is active and the corresponding interrupt is not active.

. The NVIC detects a rising edge on the interrupt signal.

. Software writes to the corresponding interrupt set-pending register bit, see Section 4.2.4: Interrupt set-

pending register.
A pending interrupt remains pending until one of the following:

. The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to
active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately reenter the ISR. Otherwise, the state of the interrupt changes to
inactive.

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state
of the interrupt changes to pending and active. In this case, when the processor returns from the ISR
the state of the interrupt changes to pending, which might cause the processor to immediately reenter
the ISR. If the interrupt signal is not pulsed while the processor is in the ISR, when the processor
returns from the ISR the state of the interrupt changes to inactive.
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. Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

. Inactive, if the state was pending.
. Active, if the state was active and pending.
4.2.8 NVIC usage hints and tips

Ensure that software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers.

An interrupt can enter the pending state even if it is disabled. Disabling an interrupt only prevents the processor
from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI, and all enabled exception like interrupts. For more information, see
Section 4.3.4: Vector table offset register.

NVIC programming hints

Software uses the CPSIEi and CPSIDi instructions to enable and disable interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void _ disable irg(void) // Disable interrupts

void _ enable irqg(void) // Enable interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 28. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC EnableIRQ(IRQn t IRQn) Enable IRQn.

void NVIC DisableIRQ(IRQn t IRQn) Disable IRQn

uint32 t NVIC GetPendingIRQ (IRQn t IRQn) Return true (1) if IRQn is pending.
void NVIC SetPendingIRQ (IRQn t IRQn) Set IRQn pending.

void NVIC ClearPendingIRQ (IRQn t IRQn) Clear IRQn pending status.
void NVIC SetPriority (IRQn t IRQn, uint32_t priority) Set priority for IRQn.
uint32 t NVIC GetPriority (IRQn t IRQn) Read priority of IRQn.

voild NVIC SystemReset (void) Reset the system.

The input parameter TROn is the IRQ number, see Table 12. Properties of the different exception types. For more
information about these functions, see the CMSIS documentation.

4.3 System control Block

The system control Block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions. The SCB registers are:

Table 29. Summary of the SCB registers

T

0xEOQOO0OOEDOO CPUID 0x410CC601 Section 4.3.2: CPUID register
0xEOOOEDO4 ICSR Rw( 1 0x00000000 Section 4.3.3: Interrupt control and state register (ICSR)
0xEOOOEDO8 VTOR RW 0x00000000 Section 4.3.4: Vector table offset register
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0xEOQOQQEDOC AIRCR 0xFA050000 Section 4.3.5: Application interrupt and reset control register
0xEOOOED10 SCR RW 0x00000000 Section 4.3.6: System control register (SCR)
0xEOOOED14 CCR RO 0x00000204 Section 4.3.7: Configuration and control register (CCR)
O0xEOOOED1IC | SHPR2 RW 0x00000000 | System handler priority register 2 (SHPR2)

0xEOQOO0OED20 SHPR3 RW 0x00000000 System handler priority register 3 (SHPR3)

1. See the register description for more information.

4.31 The CMSIS mapping of the Cortex-M0+ SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the array
SHP[1] corresponds to the registers SHPR2-SHPRS3.

4.3.2 CPUID register

The CPUID register contains the processor part number, version, and implementation information. See the
register summary in Table 29. Summary of the SCB registers for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IMPLEMENTER VARIANT Architecture
r r r r r r r r r r r r r r r r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PART No REVISION
r r r r r r r r r r r r r r r r
Bits 31:24 Implementer: Implementer code
0x41: ARM
Bits 23:20 Variant: Major revision number n in the rnpm revision status:

0x0: Revision 0

Bits 19:16 Architecture: Constant that defines the architecture of the processor:
0xC: ARMV6-M architecture

Bits 15:4 PartNo: Part number of the processor
0xC60: = Cortex-MO+

Bits 3:0 Revision: Minor revision number m in the rnpm revision status:
0x1: patch 1
4.3.3 Interrupt control and state register (ICSR)
The ICSR:
. Provides:

- A set-pending bit for the non-maskable interrupt (NMI) exception.

- Set-pending and clear-pending bits for the PendSV and SysTick exceptions.
. Indicates:

- The exception number of the highest priority pending exception.

See the register summary in Table 29. Summary of the SCB registers for the ICSR attributes. The bit assignments
are
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VECTPENDINGJ3:0] VECTACTIVE[8:0]
Reserved
r r r r w rw rw rw w w w w w

Table 30. ICSR bit assignments

RN E=EE

NMI set-pending bit.
Write:
0 = No effect.
1 = Changes NMI exception state to pending.
Read:
[31] | NMIPENDSET | rw
0 = NMI exception is not pending.
1 = NMI exception is pending.

Because NMl is the highest-priority exception, normally the processor enters the NMI
exception handler as soon as it detects a write of 1 to this bit. Entering the handler then
clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only
if the NMI signal is reasserted while the processor is executing that handler.

[30:29] - - Reserved.
PendSV set-pending bit.
Write:
0 = No effect.
1 = Changes PendSV exception state to pending.
Read:

0 = PendSV exception is not pending.

[28] = PENDSVSET = rw

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.
PendSV clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the PendSV exception.

[27] PENDSVCLR w

SysTick exception set-pending bit.
Write:
0 = No effect.
[26] PENDSTSET rw 1= Changes SysTick exception state to pending.
Read:
0 = SysTick exception is not pending.
1 = SysTick exception is pending.

[25] PENDSTCLR w  SysTick exception clear-pending bit.
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Write:
0 = No effect.

1 = Removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is unknown.
[24] - - | Reserved.
Indicates whether a pending exception is serviced on exit from debug halt state:
[23] | ISRPREEMPT r | 0=No service.
1 = Services a pending exception.
Indicates if an external configurable, NVIC generated, interrupt is pending:
[22] ISRPENDING r 0= Interrupt is not pending.
1 = Interrupt is pending.
[21:9] - - Reserved.
Indicates the exception number of the highest priority pending enabled exception:
0 = No pending exceptions.
[20:12] VECTPENDING = r  Nonzero = the exception number of the highest priority pending enabled exception.

Subtract 16 from this value to obtain the CMSIS IRQ number that identifies the
corresponding bit in the interrupt clear-enable, setenable, clear-pending, set-pending, and
priority register, see Table 6. IPSR bit assignments.

[11:9] - - | Reserved.
Contains the active exception number:
[8:0] = VECTACTIVE r | 0=Thread mode

Nonzero = The exception number of the currently active exception.

1. This is the same value as IPSR bits[5:0], Table 6. IPSR bit assignments.

When the user writes to the ICSR, the effect is unpredictable if:
. write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
. write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

4.3.4 Vector table offset register

The VTOR indicates the offset of the vector table base address from memory address 0x00000000. See the
register summary for its attributes.

The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TBLOFF[31:16]

rw rw w w rw rw rw rw rw rw w w rw rw rw
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
TBLOFF[15:7]
Reserved
rw rw rw w w w rw rw rw
Bits 31:7 TBLOFF Vector table base offset field.

It contains bits[31:7] of the offset of the table base from the bottom of the memory map.

Bits 6:0 Reserved

4.3.5 Application interrupt and reset control register

The AIRCR provides endian status for data accesses and reset control of the system. To write to this register, that
must write 0x05FA to the VECTKEY field, otherwise the processor ignores the write.
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The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
VECTKEYSTAT
w w w w w w w w w w w w w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
ENpiA S GR
NESS Reserved TREQ AcETlv Re:grv
r w w

Bits 31:16 VECTKEY register key

Register key:

Reads as Unknown

On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.
Bit 15 ENDIANESS Data endianness bit

Reads as 0.

0: Little-endian

Bits 14:3 Reserved
Bit 2 SYSRESETREQ system reset request:
0: No effect

1: Requests a system level reset.
This bit reads as 0.
Bit 1 VECTCLRACTIVE

Reserved for Debug use. This bit reads as 0. When writing to the register the user must write 0 to this bit, otherwise the
behavior is unpredictable.

Bit 0 Reserved

4.3.6 System control register (SCR)

The SCR controls features of entry to and exit from the low power state. See the register summary in
Table 29. Summary of the SCB registers for its attributes. The bit assignments are

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEVO SLEE SLEE
NPEN PDEE P ON
Reserved D Res. P EXIT Res.
rw rw rw
Bits 31:5 Reserved
Bit 4 SEVEONPEND Send Event on Pending bit

0: Only enabled interrupts or events can wake up the processor, disabled interrupts are excluded.
1 = Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or interrupt becomes pending, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

Bit 3 Reserved, must be kept cleared
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Bit 2

Bit 1

Bit0

4.3.7

31 30

15 14

Bits 31:10
Bit 9

Bits 8:4
Bit 3

Bit 2:0

4.3.8
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SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep

1: Deep sleep.

SLEEPONEXIT

Indicates sleep-on-exit when returning from Handler mode to Thread mode. Setting this bit to 1 enables an interrupt-driven
application to avoid returning to an empty main application.

0: Do not sleep when returning to Thread mode.
1: Enter sleep, or deep sleep, on return from an ISR to thread mode.

Reserved, must be kept cleared

Configuration and control register (CCR)

The CCR is a read-only register and indicates some aspects of the behavior of the Cortex® M0+ processor. See
the register summary in Table 29. Summary of the SCB registers for the CCR attributes.

The bit assignments are

29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
13 12 11 10 9 8 7 6 5 4 3 2 1 0
stk | BFHE ovo UN SET | BASE
Reserved ALIGN N Reserved _TRP TRP | Res. MPEN = THRD
- D ENA
rw rw rw rw rw rw

Reserved, must be kept cleared
STKALIGN
Always reads as one, indicates 8-byte stack alignment on exception entry.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the exception
it uses this stacked bit to restore the correct stack alignment.

Reserved, must be kept cleared
UNALIGN_ TRP
Always reads as one, indicates that all unaligned accesses generate a HardFault.

Reserved, must be kept cleared

System handler priority registers

The SHPR2-SHPRS registers set the priority level, 0 to 192, of the system exception handlers that have
configurable priority.

The SHPR2-SHPRS registers are word accessible. See the register summary for their attributes.

To access the system exception priority level using CMSIS, use the following CMSIS functions:

. uint32 t NVIC GetPriority (IRQn Type IRQn)

. void NVIC SetPriority(IRQn Type IRQn, uint32 t priority)

The input parameter TRQn is the IRQ number. See Section 2.3.2: Exception types for more information.
The system handlers, priority field, and register for each handler are:
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31 30
PRI_11
rw rw
15 14
Bits 31:30
Bits 29:0
31 30
PRI_15
w rw
15 14
Bits 31:30
Bits 29:24
Bits 23:22
Bits 21:0
4.3.9
4.4
Note:
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Table 31. System fault handler priority fields

SVCall PRI_11 System handler priority register 2 (SHPR2).
PendSV PRI_14

System handler priority register 3 (SHPR3).
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field, and bits[5:0] read as
zero and ignore writes.

System handler priority register 2 (SHPR2)

This register sets or returns priority for system handler 11.
The bit assignments are:

29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved
PRI_11: Priority of system handler 11, SVCall.
Reserved, must be kept cleared.
System handler priority register 3 (SHPR3)
The bit assignments are
29 28 27 26 25 24 23 22 21 20 19 18 17 16
PRI_14
Reserved Reserved
rw rw
13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved

PRI_15: Priority of system handler 15, SysTick exception. This is reserved when the SysTick timer is not implemented.
Reserved, must be kept cleared.
PRI_14: Priority of system handler 14, PendSV.

Reserved, must be kept cleared.

SCB usage hints and tips
Ensure that software uses aligned 32-bit word size transactions to access all the SCB registers.

SysTick timer (STK)

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the value in the
SYST_RVR on the next clock cycle, then decrements on subsequent clock cycles. Writing a value of zero to the
SYST_RVR disables the counter on the next wrap. When the counter transitions to zero, the COUNTFLAG status
bit is set to 1. Reading SYST_CSR clears the COUNTFLAG bit to 0.Writing to the SYST_CVR clears the register
and the COUNTFLAG status bit to 0. The write does not trigger the SysTick exception logic. Reading the register
returns its value at the time that it is accessed.

When the processor is halted for debugging the counter does not decrement.
The system timer registers are:
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Table 32. System timer registers summary

Required

Address Reset value Description

privilege

0XE000E0L10 STK_CSR | RW | Privileged 0x00000000 Section 4.4.1: SysTick control and status register

(STK_CSR)
O0xEO00OE014 | STK_RVR 'RW  Privileged Unknown Section 4.4.2: SysTick reload value register (STK_RVR)
O0xEOOOE018 | STK_CVR 'RW  Privileged Unknown Section 4.4.3: SysTick current value register (STK_CVR)

Section 4.4.4: SysTick calibration value register

ivi ()
0xEOOOEO1C STK_CALIB RO | Privileged 0xC0000000 (STK_CALIB)

1. SysTick calibration value.

441 SysTick control and status register (STK_CSR)

The SYST_CSR enables the SysTick features. See the register summary in Table 32. System timer registers
summary for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved rcr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved rw rw rw
Bits31:17 Reserved, must be kept cleared.
Bit 16 COUNTFLAG Returns 1 if timer counted to 0 since the last read of this register.
Bits 15:3 Reserved, must be kept cleared.
Bit 2 CLKSOURCE Selects the SysTick timer clock source:

0 = External reference clock.
1 = Processor clock.
Bit 1 TICKINT Enables SysTick exception request:
0 = Counting down to zero does not assert the SysTick exception request.
1 = Counting down to zero to asserts the SysTick exception request.
Bit 0 ENABLE Enables the counter:
0 = Counter disabled.

1 = Counter enabled.

442 SysTick reload value register (STK_RVR)

The STK_RVR specifies the start value to load into the SYST_CVR. See the register summary in
Table 32. System timer registers summary for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RELOAD
Reserved
rw rw w w w w w rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RELOAD
rw rw rw w w rw rw rw rw rw rw w w rw rw rw
Bits31:24 Reserved, must be kept cleared.
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Bits 23:0 RELOAD Value to load into the STK_CVR when the counter is enabled and when it reaches 0, see Calculating the RELOAD
value.

Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. The user can program a value of
0, but this has no effect because the SysTick exception request and COUNTFLAG are activated when counting
from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For
example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

443 SysTick current value register (STK_CVR)

The STK_CVR contains the current value of the SysTick counter. See the register summary in Table 32. System
timer registers summary for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CURRENT
Reserved
rc_w rc_w rc_w rc w rc w rc w rc_w rc_w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CURRENT

rCW rCW [ICW  [ICW  [CW  [CW [CW T[CW T[TCW [CW [ICW [ICW T[ICW T[ICW T[ICW TICW

Bits31:24 Reserved, must be kept cleared.
Bits 23:0 CURRENT Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

444 SysTick calibration value register (STK_CALIB)

The STK_CALIB register indicates the SysTick calibration properties. See the register summary in
Table 32. System timer registers summary for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ggz SKEW TENMS[23:16]
Reserved
r r r r r r r r r r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TENMS[15:0]
r r r r r r r r r r r r r r r r
Bit 31 NOREF: Reads as zero. Indicates that separate reference clock is provided. The frequency of this clock is HCLK/8.
Bit 30 SKEW: Reads as one. Calibration value for the 1ms inexact timing is not known because TENMS is not known. This can

affect the suitability of SysTick as a software real time clock.

Bits 29:24 Reserved, must be kept cleared.

Bits 23:0 TENMS[23:0]:
Indicates the calibration value when the SysTick counter runs on HCLK max/8 as external
clock. The value is product dependent, please refer to the Product Reference Manual, SysTick

Calibration Value section. When HCLK is programmed at the maximum frequency, the SysTick period is 1ms.

If calibration information is not known, calculate the calibration value required from the frequency of the processor
clock or external clock.
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445 SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for low power mode, the
SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization sequence for the
SysTick counter is:

1. Program reload value.
2. Clear current value.
3. Program Control and Status register.

4.5 Memory protection unit
This section describes the memory protection unit (MPU).

The MPU can divide the memory map into a number of regions, and defines the location, size, access
permissions, and memory attributes of each region. It supports:

. Independent attribute settings for each region.
. Overlapping regions.
. Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex®M0+ MPU defines:
. Eight separate memory regions, 0-7.
. A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest
number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps
region 7.

The background region has the same memory access attributes as the default memory map, but is accessible
from privileged software only.

The Cortex®-M0+ MPU memory map is unified. This means instruction accesses and data accesses have same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a HardFault
exception.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see Section 2.2.1: Memory regions, types, and
attributes.

Table 33. Memory attributes summary shows the possible MPU region attributes. These include Shareability and
cache behavior attributes that are not relevant to most microcontroller implementations. See MPU configuration
for a microcontroller for guidelines for programming such an implementation.

Table 33. Memory attributes summary

All accesses to Strongly-ordered memory occur in program

Strongly- - - order. All Strongly-ordered regions are assumed to be
ordered
shared.
Device Shared - Memory-mapped peripherals that several processors share.
Nonshared - Memory-mapped peripherals that only a single processor
uses.
Noncacheable Write-through
Normal Shared Cacheable Write-back Normal memory that is shared between several processors.
Cacheable
Noncacheable Write-through
Nonshared | Cacheable Write-back Normal memory that only a single processor uses.

Cacheable
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4.51

31

15

Bits 31:24
Bits 23:16

Bits 15:8

Bits 7:1
Bit0

4.5.2
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Use the MPU registers to define the MPU regions and their attributes. Table 34. MPU registers summary shows
the MPU registers.

Table 34. MPU registers summary

Reset
Address Type Description

value
0xEOOOED90 MPU_TYPE RO |0x00000000 or 0x00000800  Section 4.5.1: MPU type register
OXEOOOED94 MPU_CTRL RW | 0x00000000 Section 4.5.2: MPU control register
OXEOOOED98 MPU_RNR 'RW Unknown Section 4.5.3: MPU region number register
O0xEOOOED9C | MPU_RBAR RW  Unknown Section 4.5.4: MPU region base address register
OXEOOOEDAO A MPU_RASR RW | Unknown Section 4.5.5: MPU region attribute and size register

1. Software can read the MPU type register to test for the presence of a memory protection unit
(MPU). See Section 4.5.1: MPU type register

MPU type register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports. See the
register summary in Table 34. MPU registers summary for its attributes. The bit assignments are:

29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved IREGION[7:0]

r r r r r r r r

13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEPA

DREGION[7:0]

Reserved RATE

r r r r r r r

Reserved.

IREGION([7:0]: Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

DREGION][7:0]: Indicates the number of supported MPU data regions:
0x00 = Zero regions if the device does not include the MPU.

0x08 = Eight regions if the device includes the MPU.

Reserved.

SEPARATE: Indicates support for unified or separate instruction and date memory maps:
0 = Unified.

MPU control register

The MPU_CTRL register:

. Enables the MPU.

. Enables the default memory map background region.

. Enables use of the MPU when in the HardFault or Non-Maskable Interrupt (NMI) handler.

See the register summary in Table 34. MPU registers summary for the MPU_CTRL attributes. The bit
assignments are:
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
PRIVD
HENMI | EN
Reserved EFAEN ENA  ABLE
rw rw rw
Bits 31:3 Reserved, forced by hardware to 0.
Bit 2 PRIVDEFENA: Enable privileged software access to default memory map.

0: If the MPU is enabled, disables use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1: If the MPU is enabled, enables use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any region that is defined and enabled has priority over
this default map.

If the MPU is disabled, the processor ignores this bit.

Bit 1 HFNMIENA: Enables the operation of MPU during HardFault and NMI handlers.
When the MPU is enabled:
0 = MPU is disabled during HardFault and NMI handlers, regardless of the value of the ENABLE bit.
1 = the MPU is enabled during HardFault and NMI handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

Bit 0 ENABLE: Enables the MPU
0: MPU disabled
1: MPU enabled

When ENABLE and PRIVDEFENA are both set to 1:

. For privileged accesses, the default memory map is as described in Section 4.5: Memory protection unit.
Any access by privileged software that does not address an enabled memory region behaves as defined by
the default memory map.

. Any access by unprivileged software that does not address an enabled memory region causes a
MemManage fault.

XN and Strongly ordered rules always apply to the System Control Space regardless of the value of the ENABLE

bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to

function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled,

then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes

as if the MPU is not implemented, see Section 2.2: Memory model. The default memory map applies to accesses

from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space, and vector table are always permitted. Other

areas are accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an

exception with priority —1 or —2. These priorities are only possible when handling a HardFault or NMI exception.

Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

453 MPU region number register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR registers. See
the register summary in Table 34. MPU registers summary for its attributes. The bit assignments are:
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Reserved REGION
Bits31:8 Reserved, must be kept cleared.
Bits 7:0 REGION Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers. The MPU supports 8 memory

regions, so the permitted values of this field are 0-7.

Normally, the user writes the required region number to this register before accessing the MPU_RBAR or
MPU_RASR. However, the user can change the region number by writing to the MPU_RBAR with the VALID bit
set to 1, see Section 4.5.4: MPU region base address register. This write updates the value of the REGION field.

454 MPU region base address register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and writes to this
register can update the value of the MPU_RNR. See the register summary in Table 34. MPU registers summary
for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.
The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADDR[31:N]...
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
....ADDR[31:N] VALID REGION[3:0]
rw w rw rw rw rw rw rw rw rw rw rw rw rw rw rw
Bits 31:N ADDR[31:N]: Region base address field

The value of N depends on the region size.
For more information, see The ADDR field.
Bits N-1:5 Reserved, forced by hardware to 0.
Bit 4 VALID: MPU region number valid
Write:
0: MPU_RNR register not changed, and the processor:
Updates the base address for the region specified in the MPU_RNR
Ignores the value of the REGION field
1: the processor:
updates the value of the MPU_RNR to the value of the REGION field
updates the base address for the region specified in the REGION field.
Read:
Always read as zero.
Bits 3:0 REGION[3:0]: MPU region field
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR register.

If the region size is 32B, the ADDR field is bits [31:5], and there is no reserved field.
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The ADDR field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE field in the
MPU_RASR, defines the value of N:

N = Logy(region size in bytes),

If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region
occupies the complete memory map, and the base address is 0x00000000.

The base address must be aligned to the size of the region. For example, a 64KB region must be aligned on a
multiple of 64KB, for example, at 0x00010000 or 0x00020000.

4.5.5 MPU region attribute and size register

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR,
and enables that region and any subregions. See the register summary in Table 33. Memory attributes summary
for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved XN Rees:jarv AP[2:0] Reserved S C B
w rw rw rw rw w w w rw rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SRDI[7:0] Reserved SIZE EN
: ABLE
rw rw rw w w w w rw rw w w w rw rw

Bits 31:29 Reserved
Bit 28 XN: Instruction access disable bit:
0 = Instruction fetches enabled.
1 = Instruction fetches disabled.
Bit 27 Reserved, forced by hardware to 0.
Bits 26:24 AP[2:0]: Access permission field, see Table 37. AP encoding.
Bits 23:19 Reserved, forced by hardware to 0.

Bit 18 S: Shareable bit see Table 36. C, B, and S encoding.
Bit 17 C: Cacheable bit see Table 37. AP encoding.

Bit 16 B: Bufferable bit, see Table 36. C, B, and S encoding.
Bits 15:8 SRD: Subregion disable bits.

For each bit in this field:
0 = Corresponding sub-region is enabled.
1 = Corresponding sub-region is disabled.
See Subregions for more information.
Bits 7:6 Reserved, forced by hardware to 0.
Bits 5:1 SIZE: Size of the MPU protection region.
Specifies the size of the MPU region. The minimum permitted value is 7 (b00111). See SIZE field values for more information.

Bit 0 ENABLE: Region enable bit. The region enable bit of all regions is reset to 0. This allows the user to program only the regions
he want enabled.

For information about access permission, see Section 4.5.6: MPU access permission attributes.
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SIZE field values

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:
(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 256B, corresponding to a SIZE value of 7. Table 35. Example SIZE field
values gives example SIZE values, with the corresponding region size and value of N in the MPU_RBAR.

Table 35. Example SIZE field values

b00111 (7) 256B Minimum permitted size.
b01001 (9) 1KB 10 -
b10011 (19) 1MB 20 -
b11101 (29) 1GB 30 -
b11111 (31) 4GB 32 Maximum possible size.

1. In the MPU_RBAR, see Section 4.5.4: MPU region base address register.

4.5.6 MPU access permission attributes

This section describes the MPU access permission attributes. The access permission bits, C, B, S, AP, and XN, of
the MPU_RASR, control access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, then the MPU generates a permission fault.

Table 36. C, B, and S encoding shows the encodings for the C, B, and S access permission bits.

Table 36. C, B, and S encoding

-ﬂu Memory type Shareability Other attributes

- Strongly-ordered Shareable
0
1 - Device Shareable -
0 Not shareable
0 Normal Outer and inner write-through. No write allocate.
1 Shareable
1
0 Not shareable
1 Normal Outer and inner write-back. No write allocate.
1 Shareable

1. The MPU ignores the value of this bit.

Table 37. AP encoding shows the AP encodings that define the access permissions for privileged and
unprivileged software.

Table 37. AP encoding

Privileged Unprivileged
Description
permissions permissions

No access No access All accesses generate a permission fault.
001 RW No access Access from privileged software only.
010 RW RO Writes by unprivileged software generate a permission fault.
011 RW RW Full access.
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Privileged Unprivileged
Description
permissions permissions

Unpredictable Unpredictable Reserved.
101 RO No access Reads by privileged software only.
110 RO RO Read only, by privileged or unprivileged software.
111 RO RO Read only, by privileged or unprivileged software.
4.5.7 MPU mismatch

When the access violates the MPU permissions, the processor generates a HardFault.

4.5.8 Updating an MPU region
To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASR registers.

Updating an MPU region

Simple code to configure one region:

; Rl = region number
; R2 = size/enable
; R3 = attributes

; R4 = address

LDR RO,=MPU RNR ; OxEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region number

STR R4, [RO, #0x4] ; Region base address

STRH R2, [RO, #0x8] ; Region size and enable

STRH R3, [RO, #0xA] ; Region attribute

Software must use memory barrier instructions:

. Before MPU setup if there might be outstanding memory transfers, such as buffered writes that might be
affected by the change in MPU settings.
. After MPU setup if it includes memory transfers that must use the new MPU settings.

However, an instruction synchronization barrier instruction is not required if the MPU setup process starts by
entering an exception handler, or is followed by an exception return, because the exception entry and exception
return mechanism cause memory barrier behavior.

For example, if the user wants all of the memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction. A DSB is required after changing MPU
settings, such as at the end of context switch. An ISB is required if the code that programs the MPU region or
regions is entered using a branch or call. If the programming sequence is entered using a return from exception,
or by taking an exception, then that do not require an ISB.

Subregions

Regions are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field of the
MPU_RASR to disable a subregion, see Section 4.5.5: MPU region attribute and size register. The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling
a subregion means another region overlapping the disabled range matches instead. If no other enabled region
overlaps the disabled subregion the MPU issues a fault.
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Example of SRD use

Two regions with the same base address overlap. Region one is 128KB, and region two is 512KB. To ensure the
attributes from region one apply to the first 128KB region, set the SRD field for region two to k00000011 to
disable the first two subregions, as the figure shows.

Figure 15. Example of SRD use

Region 2, with  Offset from
subregions base address

512KB
448KB
384KB
320KB
256KB
192KB
Base address of both Disabled subregion 128KB
regions Disabled subregion 64KB
0

Region 1

DT33835V1

459 MPU design hints and tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent
any previous region settings from affecting the new MPU setup.

MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU

as follows:

Table 38. Memory region attributes for a microcontroller
Memory region C B 'S Memory type and attributes
Flash memory 1 0 0 | Normal memory, Non-shareable, write-through.
Internal SRAM 1 0 |1 | Normal memory, Shareable, write-through.
External SRAM 1 1 1 | Normal memory, Shareable, write-back, write-allocate.
Peripherals 0 1 1 Device memory, Shareable.

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a
separate DMA engine, the shareability attribute might be important. In these cases refer to the recommendations
of the memory device manufacturer.

4.6 1/0 Port

Cortex®-M0+ implements a dedicated I/O port for high-speed, low-latency access to peripherals. The I/O port is
memory mapped and supports all the load and store instructions given in Section 3.4: Memory access
instructions. The I/O port does not support code execution.

The general-purpose I/Os are accessed through the I/O port.
The MPU can protect the 1/O port.
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